[1]Neubauer F, Merkleina M. Tribological and thermal investigation of modified hot stamping tools[J]. Tribology in Industry, 2019, 41(1): 76-89. [2]Liu Y, Lin J, Min J, et al. Effect of deep cryogenic treatment on mechanical properties and microstructure of the tool steel CR7V for hot stamping[J]. Journal of Materials Engineering and Performance, 2018, 27(9): 4382-4391. [3]Zhang Y, Lai F, Qu S, et al. Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel[J]. Applied Surface Science, 2020, 386: 125497. [4]胡英俊, 黄小波, 高玉魁. 喷丸处理对锆合金微动磨损及抗腐蚀性能的影响[J]. 表面技术, 2020, 49(7): 238-254. Hu Yingjun, Huang Xiaobo, Gao Yukui. Effect of shot peening on fretting wear and corrosion resistance of zirconium alloy[J]. Surface Technology, 2020, 49(7): 238-254. [5]Maleki E, Unal O, Kashyzadeh K R. Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel[J]. Surface and Coatings Technology, 2018, 344: 62-74. [6]Kovacı H, Hacısalihoğlu I·, Yetim A F, et al. Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of AISI 4140 low-alloy steel[J]. Surface and Coatings Technology, 2019, 358: 256-265. [7]Khun N W, Trung P Q, Butler D L. Study on hardness and wear resistance of shot peened AA7075-T6 aluminum alloy[J]. Engineering Research Express, 2021, 3(1): 15-31. [8]徐松超, 盖鹏涛, 付雪松, 等. 干、湿喷丸强化对TC17钛合金喷丸强化层的影响[J]. 表面技术, 2021, 50(9): 91-98. Xu Songchao, Gai Pengtao, Fu Xuesong, et al. Influences of dry and wet shot peening process on strengthening layer of TC17 titanium alloy[J]. Surface Technology, 2021, 50(9): 91-98. [9]孙 强, 黄苏起, 蔡著文, 等. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157. Sun Qiang, Huang Suqi, Cai Zhuwen, et al. Anti-galling performance of two hot stamping mould steels[J]. Material Reports, 2021, 35(10): 10152-10157. [10]吴 瑛, 雷丽萍, 曾 攀. 喷丸强化对H13钢表面完整性的影响[J]. 锻压技术, 2017, 42(11): 164-171. Wu Ying, Lei Liping, Zeng Pan. Influence of shot peening on surface integrity of steel H13[J]. Forging and Stamping Technology, 2017, 42(11): 164-171. [11]付 鹏. 高强双相钢喷丸强化及其XRD表征[D]. 上海: 上海交通大学, 2015. [12]吕鹤婷, 王建明, 刘兴睿. 喷丸残余应力对裂纹闭合效应影响的数值仿真[J]. 中国表面工程, 2016, 29(2): 102-110. Lü Heting, Wang Jianming, Liu Xingrui. Numerical simulation for residual stress fields of shot-peening on crack closure effects[J]. China Surface Engineering, 2016, 29(2): 102-110. [13]Ngár T, Ott S, Sanders P G, et al. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J]. Acta Materialia, 1998, 46(10): 3693-3699. [14]Dutta R K, Petrov R H, Delhez R, et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel[J]. Acta Materialia, 2013, 61(5): 1592-1602. [15]Ungár T, Dragomir I, Borbély A. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice[J]. Journal of Applied Crystallography, 1999, 32(5): 992-1002. [16]Hall E O. The deformation and ageing of mild Steel: III Discussion of Results[J]. Proceedings of the Physical Society. Section B, 1951, 643(9): 747-752. [17]李国宾, 关德林, 张明星. 表面纳米化中碳钢在干摩擦条件下的摩擦磨损性能研究[J]. 摩擦学学报, 2008, 28(1): 39-43. Li Guobin, Guan Delin, Zhang Mingxing. Friction and wear properties of medium carbon steel by means of surface nanocrystallization in dry sliding[J]. Tribology, 2008, 28(1): 39-43. |