[1]Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx(x=0-1.5) high-entropy alloys[J]. Materials Science and Engineering: A, 2017, 704: 82-90. [2]Wu Yidong, Cai Yuanhua, Wang Tiaolan, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130: 277-280. [3]Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium[J]. Intermetallics, 2017, 89: 123-132. [4]Rogal L, Czerwinski F, Jochym P T, et al. Microstructure and mechanical properties of the novel H25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions[J]. Materials and Design, 2016, 92: 8-17. [5]Guo Nana, Wang Liang, Luo Liangshun, et al. Effect of composing element on microstructure and mechanical properties in Mo-Nb-Hf-Zr-Ti multi-principle component alloys[J]. Intermetallics, 2016, 69: 13-20. [6]Juan Chienchang, Tseng Kokai, Hsu Weilin, et al. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys[J]. Materials Letters, 2016, 175: 284-287. [7]王兰馨. AlFeCrCuX高熵合金力学性能的第一性原理计算[D]. 大连: 大连理工大学, 2017. Wang Lanxin. The first-principle studies on mechanical properties of AlFeCrCuX high entropy alloys[D]. Dalian: Dalian University of Technology, 2017. [8]崔酉鸣. Al1.5CrFeMnTi高熵合金的DFT理论研究[D]. 西安: 西安石油大学, 2021. Cui Youming. Theoretical study on Al1.5CrFeMnTi high entropy alloys with DFT method[D]. Xi'an: Xi'an Shiyou University, 2021. [9]王浩玉. MoNbTa基难熔高熵合金成分设计及第一性原理计算[D]. 沈阳: 沈阳航空航天大学, 2019. Wang Haoyu. The composition design and first principles calculation of MoNbTa-based refractory high entropy alloys[D]. Shenyang: Shenyang Aerospace University, 2019. [10]马晓雷. 纳米器件材料界面的第一性原理研究[D]. 济南: 山东大学, 2020. Ma Xiaolei. Study of materials interface on nano device based on first principle calculation[D]. Jinan: Shandong University, 2020. [11]曾宪仕. 高Nb-TiAl合金中析出相高压物性理论研究[D]. 绵阳: 中国工程物理研究院, 2020. Zeng Xianshi. Theoretical study on physical properties of precipitated phases in high Nb containing TiAl alloy under high pressure[D]. Mianyang: China Academy of Engineering Physics, 2020. [12]王兰馨, 姚 山, 温 斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(S2): 356-359. Wang Lanxin, Yao Shan, Wen Bin. First-principle studies of AlFexTiCrZnCu high entropy alloys with the different mole fractions of Fe[J]. Materials Reports, 2019, 33(S2): 356-359. [13]王 璐. Ti-Zr-Hf-Nb-Al高熵合金相形成规律及变形机理研究[D]. 北京: 北京科技大学, 2020. Wang Lu. Phase formation rule and deformation mechanism of Ti-Zr-Hf-Nb-Al high-entropy alloy[D]. Beijing: University of Science and Technology Beijing, 2020. [14]张蔚冉. 面向核能体心立方高熵合金的设计和性能[D]. 北京: 北京科技大学, 2020. Zhang Weiran. Design and properties of body-centered cubic(BCC) high-entropy alloys for nuclear energy[D]. Beijing: University of Science and Technology Beijing, 2020. [15]江洪林, 胡志方, 宋春燕, 等. 第一性原理计算Sc含量对TiZrHfNbScx难熔高熵合金性能的影响[J]. 稀有金属, 2022, 46(10): 1383-1389. Jiang Honglin, Hu Zhifang, Song Chunyan, et al. First principal study of TiZrHfNbScx refractory high entropy alloys with different Sc content[J]. Chinese Journal of Rare Metals, 2022, 46(10): 1383-1389. [16]Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6): 534-538. [17]Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132: 233-238. [18]Guo S, Chun N G, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 103505. [19]Wang Junjun, Kuang Shaofu, Yu Xu, et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering[J]. Surface and Coatings Technology, 2020, 403: 126374. [20]周 磊. 高熵合金AlxCoCrFeNi(x=1, 2)力学性质的第一性原理研究[D]. 郑州: 郑州大学, 2011. [21]王 根, 李新梅. 第一性原理计算Cu、Co含量对 CoCuFeNi系高熵合金的影响[J]. 功能材料, 2020, 51(3): 3189-3195. Wang Gen, Li Xinmei. Effects of Cu, Co contents on CoCrFeNi system high-entropy alloys by the first principle calculation[J]. Journal of Functional Materials, 2020, 51(3): 3189-3195. [22]熊志华. ZnO掺杂改性的第一性原理计算[D]. 南昌: 南昌大学, 2008. Xiong Zhihua. First-principles investigation on characteristics of doped-ZnO[D]. Nanchang: Nanchang University, 2008. [23]Miao Naihua, Sai Baisheng, Zhou Jian, et al. Theoretical investigation on the transition metal borides with Ta3B4 type structure: A class of hard and refractory materials[J]. Computational Materials Science, 2011, 50(4): 1559-1566. |