[1]李宝奎, 王爱香, 顾 敏. 渗碳淬火齿轮畸变控制技术的研究现状[J]. 金属热处理, 2006, 31(12): 6-11.
Li Baokui, Wang Aixiang, Gu Min. Research status on distortion control of carburizing and hardening gears[J]. Heat Treatment of Metals, 2006, 31(12): 6-11.
[2]卢金生, 李宝奎. 齿轮的精密热处理及抗疲劳制造探讨[J]. 机械传动, 2019, 43(3): 170-175.
Lu Jinsheng, Li Baokui.Discussion of precision heat treatment and anti-fatigue manufacturing of gear[J]. Journal of Mechanical Transmission, 2019, 43(3): 170-175.
[3]陈国民. 齿轮感应淬火的应用前景[J]. 机械工人, 2006(11): 6-7.
[4]邢 壮, 邢志国, 王海斗, 等. 装甲车辆重载齿轮综合强化方法研究现状[J]. 材料导报, 2017, 31(11): 86-94.
Xing Zhuang, Xing Zhiguo, Wang Haidou,et al. Research status of comprehensive strengthening methods for heavy-duty gear of armored vehicles[J]. Materials Reports, 2017, 31(11): 86-94.
[5]李彩云, 邢志国, 赵向伟, 等. 强化方法对重载齿轮弯曲疲劳强度影响的研究现状与建议[J]. 材料导报, 2020, 34(21): 21146-21154.
Li Caiyun, Xing Zhiguo, Zhao Xiangwei, et al.Research status and suggestions on influence of strengthening methods on bending fatigue strength of heavy-duty gear[J]. Materials Reports, 2020, 34(21): 21146-21154.
[6]田亚媛, 瞿 皎, 秦 亮, 等. 齿轮表面强化技术研究现状[J]. 热加工工艺, 2011, 40(24): 211-215.
Tian Yayuan, Qu Jiao, Qin Liang,et al. Research status on gear surface strengthening technology[J]. Hot Working Technology, 2011, 40(24): 211-215.
[7]杜树芳. 渗氮齿轮代替渗碳齿轮研究的进展[J]. 金属加工(热加工), 2014(S2): 106-109.
[8]肖伟中. 齿轮硬化层疲劳剥落强度研究与应用[D]. 北京: 机械科学研究总院, 2016.
Xiao Weizhong. Research and application of fatigue spalling strength of gear hardened layer[D]. Beijing: Academy of Machinery Science and Technology, 2016.
[9]Boniardi M, Errico F D', Tagliabue C. Influence of carburizing and nitriding on failure of gears-A case study[J]. Engineering Failure Analysis, 2006, 13(3): 312-339.
[10]Fernandes P J L, McDuling C. Surface contact fatigue failures in gears [J]. Engineering Failure Analysis, 1997, 4(2): 99-107.
[11]卢金生, 陈国民. 渗氮齿轮与渗碳齿轮的技术及经济性对比[J]. 金属热处理, 2010, 35(3): 25-28.
Lu Jinsheng, Chen Guomin. Technical and economic comparison of nitrided gear and carburized gear[J]. Heat Treatment of Metals, 2010, 35(3): 25-28.
[12]郭魁元. 重型机械零件的离子渗氮[J]. 金属热处理, 1986(3): 41-43.
[13]GB/T 3480.5—2021,直齿轮和斜齿轮承载能力计算 第5部分:材料的强度和质量[S].
[14]冯显磊, 王 忠, 率秀清, 等. 离子氮化技术在低速重载齿轮上的工艺研究与应用[J]. 热处理技术与装备, 2018, 39(2): 20-25.
Feng Xianlei, Wang Zhong, Shuai Xiuqing, et al. Research and application of ion nitriding technology on gear of low speed and heavy loading[J]. Heat Treatment Technology and Equipment, 2018, 39(2): 20-25.
[15]李贞子, 马汝忠, 张国政. 深层氮化齿轮弯曲疲劳性能研究[J]. 汽车工艺与材料, 2009(12): 43-44.
[16]卢金生, 顾 敏. 深层离子渗氮工艺及设备的开发[J]. 金属加工(热加工), 2009(1): 29-33.
[17]高红梅, 文 超, 孙轶山. 显微组织和温度对42CrMo4钢力学性能的影响[J]. 材料热处理学报, 2018, 39(3): 87-92.
Gao Hongmei, Wen Chao, Sun Yishan. Effects of microstructure and temperature on mechanical properties of 42CrMo4 steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 87-92.
[18]焦 丽, 王国亮, 徐向阳, 等. 亚共析钢中的组织缺陷[J]. 热处理, 2017, 32(1): 11-16.
Jiao Li, Wang Guoliang, Xu Xiangyang, et al. Defective structures in hypoeutectoid steel[J]. Heat Treatment, 2017, 32(1): 11-16.
[19]余德河. 冷却条件对42CrMo钢的组织和性能的影响[J]. 冶金丛刊, 2010(6): 4-6.
Yu Dehe. Effect of cooling condition on microstructure and properties of 42CrMo steel[J]. Metallurgical Collections, 2010(6): 4-6.
[20]陈俊丹, 莫文林, 王 培, 等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193.
Chen Jundan, Mo Wenlin, Wang Pei, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metallurgica Sinica, 2012, 48(10): 1186-1193.
[21]吕超然, 史 超, 蒋伟斌, 等. 回火温度对42CrMo钢组织和力学性能的影响[J]. 金属热处理, 2021, 46(1): 32-37.
Lü Chaoran, Shi Chao, Jiang Weibin, et al. Effect of tempering temperature on microstructure and mechanical properties of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(1): 32-37.
[22]杨 敏, 崔 冕, 李占阳, 等. 回火温度对42CrMo钢金相组织及力学性能的影响[J]. 现代冶金, 2019, 47(1): 4-5.
[23]郭 昊. 高速列车车轴用中碳低合金钢热加工工艺及组织性能研究[D]. 沈阳: 东北大学, 2020.
Guo Hao. Research on thermal processing technology and microstructure and properties of medium carbon low alloy steel for high speed train axles[D]. Shenyang: Northeastern University, 2020.
[24]房双强, 陈茂涛, 张 进. 调质预处理对32Cr3Mo1V钢渗氮层的影响[J]. 金属热处理, 2016, 41(4): 146-149.
Fang Shuangqiang, Chen Maotao, Zhang Jin. Effect of quenching and tempering process on 32Cr3Mo1V steel nitriding layer[J]. Heat Treatment of Metals, 2016, 41(4): 146-149.
[25]行坤峰. 调质处理对1Cr17Ni2钢锥阀离子渗氮组织的影响[J]. 金属热处理, 2019, 44(5): 186-189.
Xing Kunfeng. Effect of quenching and tempering on microstructure of ionic nitrided layer of 1Cr17Ni2 steel cone valve[J]. Heat Treatment of Metals, 2019, 44(5): 186-189.
[26]刘 迨, 荀毓闽. 关于氮化层中脉状组织的探讨[J]. 金属热处理, 1979, 4(1): 15-24.
[27]苏红文. 真空渗氮工艺特性及渗氮层性能研究 [D]. 大连: 大连海事大学, 2009.
Su Hongwen. Study of process characteristics and nitride layer properties of vacuum nitriding [D]. Dalian: Dalian Maritime University, 2009.
[28]冯治国, 郑纪豹, 刘 静. 渗氮温度对38CrMoAl钢真空感应渗氮层耐磨性能的影响[J]. 材料热处理学报, 2017, 38(10): 100-105.
Feng Zhiguo, Zheng Jibao, Liu Jing. Effect of nitriding temperature on wear resistance of vacuum induction nitriding layer of 38CrMoAl steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 100-105.
[29]周上祺, 范秋林, 任 勤, 等. 快速深层渗氮工艺的设计[J]. 金属热处理, 1998, 23(3): 4-6.
Zhou Shangqi, Fan Qiulin, Ren Qin, et al. Design of rapid-deep level nitriding process[J]. Heat Treatment of Metals, 1998, 23(3): 4-6.
[30]卢金生, 张 衡, 许鸿翔, 等. 6.5 MW核电水泵内齿圈的离子渗氮工艺[J]. 金属热处理, 2022, 47(3): 97-102.
Lu Jinsheng, Zhang Heng, Xu Hongxiang,et al. Ion nitriding technology of inner gear ring of 6.5 MW nuclear power pump[J]. Heat Treatment of Metals, 2022, 47(3): 97-102.
[31]卢金生, 王晓宁, 张祥儒, 等. 高速列车DZ2车轴离子渗氮工艺研究[J]. 铁道学报, 2022, 44(1): 32-38.
Lu Jinsheng, Wang Xiaoning, Zhang Xiangru, et al. Study on ion nitriding technology of axle of high-speed train with DZ2 steel[J]. Journal of the China Railway Society, 2022, 44(1):32-38.
[32]阎牧夫, Sun Y, Bell T, 等. La在脉冲离子渗氮表层中的扩散及其对氮分布和相结构的影响[J]. 金属学报, 2000, 36(5): 487-491.
Yan Mufu, Sun Y, Bell T, et al. Diffusion of La in plasma RE ion nitride surface layer and its effect on nitrogen concentration profiles and phase structures[J]. Acta Metallurgica Sinica, 2000, 36(5): 487-491.
[33]李双喜, 顾 敏, 孙启锋. 富铈稀土加入量对离子渗氮催渗效果的影响[J]. 金属热处理, 2019, 44(3): 93-96.
Li Shuangxi, Gu Min, Sun Qifeng. Energized function of Ce-rich rare earth content on ion nitriding[J]. Heat Treatment of Metals, 2019, 44(3): 93-96.
[34]Chen X, Yao L, Guo J, et al. Improvement in surface properties of M50NiL steel by plasma nitriding with rare earth addition[J]. Journal of Failure Analysis and Prevention, 2019, 19(5): 1420-1427.
[35]孙启锋, 李双喜, 李宝奎, 等. 预氧化对40CrNiMo钢离子渗氮渗速及组织的影响[J]. 金属热处理, 2019, 44(3): 145-148.
Sun Qifeng, Li Shuangxi, Li Baokui, et al. Effect of pre-oxidation on ionic nitriding speed and microstructure of 40CrNiMo steel[J]. Heat Treatment of Metals, 2019, 44(3): 145-148.
[36]陈 玮, 王 蕾, 周 磊, 等. 钢的快速渗氮技术研究现状[J]. 武汉科技大学学报(自然科学版), 2006, 29(3): 225-228.
Chen Wei, Wang Lei, Zhou Lei, et al. Recent researches on rapid nitriding of steel[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2006, 29(3): 225-228.
[37]刘 丹, 刘道新, 张晓化, 等. 金属表面形变纳米化对渗氮行为影响研究进展[J]. 稀有金属材料与工程, 2019, 48(4): 1352-1360.
Liu Dan, Liu Daoxin, Zhang Xiaohua, et al. Research progress in effect of surface deformation nano-crystalline on nitriding behavior of metallic materials[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1352-1360.
[38]佟伟平, 陶乃垅, 王镇波, 等. 具有纳米结构表层的纯铁和38CrMoAl钢的渗氮[J]. 中国科学院研究生院学报, 2005, 22(2): 230-238.
Tong Weiping, Tao Nailong, Wang Zhenbo, et al. Nitriding iron and 38CrMoAl steel with a nanostructured surface layer[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2005, 22(2): 230-238.
[39]李 杨, 徐久军, 王 亮, 等. 42CrMo钢表面纳米化对离子渗氮的影响[J]. 中国表面工程, 2010, 23(3): 60-63.
Li Yang, Xu Jiujun, Wan Liang, et al. Plasma nitriding of 42CrMo steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J]. China Surface Engineering, 2010, 23(3): 60-63.
[40]卑多慧, 吕 坚, 顾剑锋, 等. 表面纳米化预处理对低碳钢气体渗氮行为的影响[J]. 材料热处理学报, 2002, 23(1): 19-24.
Bei Duohui, Lü Jian, Gu Jianfeng, et al. Effects of surface nano crystallization pre-treatment on gas nitriding behavior of low steel[J]. Transactions of Materials and Heat Treatment, 2002, 23(1): 19-24.
[41]卢金生, 杜树芳. 时效硬化渗氮齿轮钢及深层渗氮工艺[J]. 机械传动, 2022, 46(4): 165-170.
Lu Jinsheng, Du Shufang. Age-hardening nitriding gear steel and deep case nitriding process[J]. Journal of Mechanical Transmission, 2022, 46(4): 165-170.
[42]胡树兵, 李志章, 梅 志. 物理气相沉积TiN复合涂层研究进展[J]. 材料科学与工程, 2000, 18(2): 110-115.
Hu Shubing, Li Zhizhang, Mei Zhi. Research development of the TiN PVD composite coatings[J]. Materials Science and Engineering, 2000, 18(2): 110-115.
[43]王永光, 陈 瑶, 陆小龙, 等. 40Cr钢表面渗氮及制备CrN涂层在重载低速下的摩擦学性能[J]. 表面技术, 2018, 47(2): 71-76.
Wang Yongguang, Chen Yao, Lu Xiaolong, et al. Tribological properties of plasma nitriding and CrN coating on 40Cr steel with high load at low speed[J]. Surface Technology, 2018, 47(2): 71-76.
[44]Zlatanović M, Kakas D, Mazibrada L, et al. Influence of plasma nitriding on wear performance of TiN coating[J]. Surface and Coatings Technology, 1994, 64(3): 173-181.
[45]刘红梅. 40Cr钢表面PN+PCVD复合处理的组织和性能研究[D]. 武汉: 武汉科技大学, 2008.
Liu Hongmei. Study on the structure and property of 40Cr surface deposited by the PN+PCVD complex treatment[D]. Wuhan: Wuhan University of Science and Technology, 2008.
[46]秦真波, 吴 忠, 胡文彬. 表面工程技术的应用及其研究现状[J]. 中国有色金属学报, 2019, 29(9): 2192-2216.
Qin Zhenbo, Wu Zhong, Hu Wenbin. Application and progress of surface engineering technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2192-2216.
[47]Yan M F, Wang Y X, Chen X T, et al. Laser quenching of plasma nitrided 30CrMnSiA steel[J]. Materials and Design, 2014, 58(6): 154-160. |