[1]吕仁杰, 裴 伟. 高锰钢研究进展和展望[J]. 冶金设备, 2019(4): 57-61, 39. Lü Renjie, Pei Wei. Research progress and prospect of high manganese steel[J]. Metallurgical Equipment, 2019(4): 57-61, 39. [2]宋仁伯, 冯一帆, 彭世广, 等. 高锰钢衬板的研究及应用[J]. 材料导报, 2015, 29(19): 74-78. Song Renbo, Feng Yifan, Peng Shiguang, et al. Research and application of high manganese steel lining plate[J]. Materials Reports, 2015, 29(19): 74-78. [3]杨 帅. 辙叉用高锰钢滚动接触疲劳表层硬化特征及组织分析[J]. 金属热处理, 2020, 45(11): 239-243. Yang Shuai. Microstructure analysis and rolling contact fatigue surface hardening characteristics of high manganese steel used for railway crossing[J]. Heat Treatment of Metals, 2020, 45(11): 239-243. [4] Varela L B, Tressia G, Masoumi M, et al. Roller crushers in iron mining, how does the degradation of Hadfield steel components occur?[J]. Engineering Failure Analysis, 2021, 122(3): 105295. [5]马 华, 陈 晨, 王 琳, 等. Mo合金化处理对高锰钢磨损行为的影响[J]. 机械工程学报, 2020, 56(14): 81-90. Ma Hua, Chen Chen, Wang Lin, et al. Effect of Mo alloying on wear behavior of hadfield steel[J]. Journal of Mechanical Engineering, 2020, 56(14): 81-90. [6]张腾飞. 球磨机高锰钢衬板的成分与性能优化研究[D]. 北京: 北京交通大学, 2017. Zhang Tengfei. Optimization and study on composition and performance of high manganese steel liner for ball mill[D]. Beijing: Beijing Jiaotong University, 2017. [7] Majid Abbasi, Shahram Kheirandish, Yousef Kharrazi, et al. On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels[J]. Wear, 2010, 268(1/2): 202-207. [8]于洪军, 程福超, 马泽天, 等. 不同水韧处理工艺下铌微合金化高锰钢的组织演变和力学性能[J]. 金属热处理, 2022, 47(4): 151-154. Yu Hongjun, Cheng Fuchao, Ma Zetian, et al. Microstructure evolution and mechanical properties of Nb-alloyed high manganese steel under different water toughening processes[J]. Heat Treatment of Metals, 2022, 47(4): 151-154. [9] Jafarian H R, Sabzi M, Anijdan S, et al. Influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganese steel[J]. Journal of Materials Research and Technology, 2021, 10: 819-831. [10]林芷青, 张福成, 马 华, 等. 锻焊和形变热处理对铸造高锰钢辙叉耐磨性的影响[J]. 金属热处理, 2021, 46(8): 92-98. Lin Zhiqing, Zhang Fucheng, Ma Hua, et al. Effect of FW&TMCP treatment on wear resistance of as-cast high manganese steel frog[J]. Heat Treatment of Metals, 2021, 46(8): 92-98. [11]杨志南, 张福成, 张 明, 等. 高锰钢辙叉机械冲击预硬化工艺研究[J]. 机械工程学报, 2011, 47(16): 20-24. Yang Zhinan, Zhang Fucheng, Zhang Ming, et al. Study on mechanical impact pre-hardening technology of high manganese steel crossing[J]. Journal of Mechanical Engineering, 2011, 47(16): 20-24. [12] Zhang F, Chen C, Lv B, et al. Effect of pre-deformation mode on the microstructures and mechanical properties of hadfield steel[J]. Materials Science and Engineering, 2019, 743: 251-258. [13]郎 东, 黄维刚. Fe-Mn-C-Si-Cr高锰钢中的层错能和实验研究[J]. 铸造技术, 2021, 42(7): 575-578, 588. Lang Dong, Huang Weigang. Stacking fault energy in Fe-Mn-C-Si-Cr high manganese steels and experimental investigation[J]. Foundry Technology, 2021, 42(7): 575-578, 588. [14]张福全, 邵飞杰, 周惦武. Mn13Cr2高锰钢冲击磨损机制的研究[J]. 湖南大学学报(自然科学版), 2014, 41(12): 6-10. Zhang Fuquan, Shao Feijie, Zhou Dianwu. Research on impact wear mechanism of high manganese steel Mn13Cr2[J]. Journal of Hunan University (Natural Sciences), 2014, 41(12): 6-10. |