[1]陈 辉, 景财年. 热成形技术在汽车轻量化中的应用与发展[J]. 金属热处理, 2016, 41(3): 61-65. Chen Hui, Jing Cainian. Application and development of hot forming technology for automobile lightening[J]. Heat Treatment of Metals, 2016, 41(3): 61-65. [2]李 勇, 李家栋, 付天亮, 等. 热成形加热新技术[J]. 金属热处理, 2014, 39(7): 66-71. Li Yong, Li Jiadong, Fu Tianliang, et al. New heating technology of hot stamping[J]. Heat Treatment of Metals, 2014, 39(7): 66-71. [3]陈 波, 魏焕君, 耿志宇, 等. 热成形钢的脱碳影响因素分析[J]. 金属热处理, 2021, 46(2): 161-167. Chen Bo, Wei Huanjun, Geng Zhiyu, et al. Analysis on factors affecting decarburization of hot forming steel[J]. Heat Treatment of Metals, 2021, 46(2): 161-167. [4]徐德超, 赵海峰, 李学涛, 等. 回火温度对淬火22MnB5热成形钢组织及性能的影响[J]. 材料热处理学报, 2018, 39(8): 37-40. Xu Dechao, Zhao Haifeng, Li Xuetao, et al. Effect of tempering temperature on microstructure and mechanical properties of 22MnB5 hot stamping steel after quenching[J]. Transactions of Materials and Heat Treatment, 2018, 39(8), 37-40. [5]马鸣图, 路洪洲, 孙智福, 等. 22MnB5钢三种热冲压成形件的冷弯性能[J]. 机械工程材料, 2016, 40(7): 7-12. Ma Mingtu, Lu Hongzhou, Sun Zhifu, et al. Cold bending properties of three kinds of 22MnB5 steel hot stamping parts[J]. Materials for Mechanical Engineering, 2016, 40(7): 7-12. [6]胡宽辉. 2000 MPa级高强塑积热成形钢的研究[D]. 武汉: 武汉科技大学, 2019. [7]王彭涛, 李学涛, 李翔宇, 等. 2000 MPa热冲压钢相变行为及热冲压温度工艺研究[J]. 冶金与材料, 2019, 39(5): 1-4. [8]梁江涛. 2000 MPa级热成形钢的强韧化机制及应用技术研究[D]. 北京: 北京科技大学, 2019. [9]杨 哲, 曹 睿, 刘振宝, 等. 热处理对2000 MPa超高强度不锈钢组织和性能的影响[J]. 钢铁, 2016, 51(10): 48-53. Yang Zhe, Cao Rui, Liu Zhenbao, et al. Effect of heat treatment on mechanical property of 2000 MPa grade ultra-high strength stainless steel[J]. Iron and Steel, 2016, 51(10): 48-53. [10]吕丽文, 吴 军, 张立武. 热处理对旋压态2000 MPa级马氏体时效钢组织和硬度的影响[J]. 热加工工艺, 2012, 41(4): 212-214. Lü Liwen, Wu Jun, Zhang Liwu, et al. Effect of heat treatment on structure and hardness of spinning states 2000 MPa grade maraging steel[J]. Hot Working Technology, 2012, 41(4): 212-214. [11]谌 康, 夏 彬, 徐 乐, 等. 2000 MPa级马氏体钢的氢脆敏感性[J]. 材料热处理学报, 2017, 38(8): 76-82. Shen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement susceptibility of 2000 MPa grade martensitic steels[J]. Transactions of Materials and Heat Treatment, 2017, 38(8): 76-82. [12]Kim H, Jeon S, Yang W, et al. Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steel[J]. Journal of Alloys and Compounds, 2018, 735: 2067-2080. [13]林 利, 梁 文, 朱国明, 等. Q&P工艺对1800 MPa新型热成形钢微观组织和力学性能的影响[J]. 机械工程学报, 2019, 55(10): 77-85. Lin Li, Liang Wen, Zhu Guoming, et al. Influence of quenching and partitioning process on microstructure and mechanical properties of a novel 1800 MPa hot stamping steel[J]. Journal of Mechanical Engineering, 2019, 55(10): 77-85. [14]闻玉辉, 朱国明, 郝 亮, 等. Nb-Ti微合金化热冲压成形用钢的微观组织与力学性能[J]. 工程科学学报, 2017, 39(6): 859-866. Wen Yuhui, Zhu Guoming, Hao Liang, et al. Microstructure and mechanical properties of Nb-Ti micro-alloy hot stamping steels[J]. Chinese Journal of Engineering, 2017, 39(6): 859-866. [15]Wu G H, Wu K M, Isayev O, et al. Effect of austenitizing temperature on pearlite transformation of a medium-carbon steel[J]. Metallurgist, 2019, 62: 1073-1080. [16]张正延, 孙新军, 雍歧龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016, 52(4): 410-418. Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Precipitation behavior of nanometer-sized carbides in Nb-Mo microalloyed high strength steel and its strengthening mechanism[J]. Acta Metallurgica Sinica, 2016, 52(4): 410-418. [17]Nakagawa Yuki, MoriKen-ichiro, Maeno Tomoyoshi, et al. Reduction in holding time at bottom dead centre in hot stamping by water and die quenching[J]. Procedia Manufacturing, 2018, 15: 1111-1118. [18]梁江涛, 赵征志, 尹鸿详, 等. 超高强热成形钢的应变速率敏感性[J]. 工程科学学报, 2018, 40(9): 1083-1090. Liang Jiangtao, Zhao Zhengzhi, Yin Hongxiang, et al. Strain rate sensitivity of ultra-high strength hot stamping steel[J]. Chinese Journal of Engineering, 2018, 40(9): 1083-1090. [19]张永健, 惠卫军, 董 瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为[J]. 金属学报, 2013, 49(10): 1153-1159. Zhang Yongjian, Hui Weijun, Dong Han. Hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength steel sheet after hot stamping[J]. Acta Metallurgica Sinica, 2013, 49(10): 1153-1159. [20]Lin Li, Li Baoshun, Zhu Guoming, et al. Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5[J]. Materials Science and Engineering A, 2018, 721(4): 38-46. [21]Li J, Gao X, Du L, et al. Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel[J]. Journal of Materials Science and Technology, 2017, 33(12): 1504-1512. |