[1]Li B, Zhu H, Qiu C, et al. Laser cladding and in-situ nitriding of martensitic stainless steel coating with striking performance[J]. Materials Letters, 2020, 259: 126829. [2]Lv H, Li X, Li Z, et al. Investigation on the columnar-to-equiaxed transition during laser cladding of IN718 alloy[J]. Journal of Manufacturing Processes, 2021, 67: 63-76. [3]Lee C, Park H, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr[J]. Applied Surface Science, 2015, 345: 286-294. [4]Luo X, Li J, Li G J, et al. Effect of NiCrBSi content on microstructural evolution, cracking susceptibility and wear behaviors of laser cladding WC/Ni-NiCrBSi composite coatings[J]. Journal of Alloys and Compounds, 2015, 626 102-111. [5]Ding L, Hu S S, Quan X M, et al. Microstructure evolution and tribological properties of Co-based-VN alloy-Ti composite coatings by aging treatment[J]. Surface and Coatings Technology, 2017, 330: 178-184. [6]董 会, 郭鹏飞, 徐 龙, 等. 热处理温度对高速激光熔覆Ni/316L涂层组织及摩擦磨损性能的影响[J]. 表面技术, 2022, 51(5): 111-120. Dong Hui, Guo Pengfei, Xu Long, et al. Effect of heat treatment temperature on microstructure and friction and wear properties of high-speed laser cladded Ni/316L coating[J]. Surface Technology, 2022, 51(5): 111-120. [7]崔 宸, 武美萍, 夏思海. 热处理对42CrMo钢表面激光熔覆钴基涂层性能的影响[J]. 中国激光, 2020, 47(6): 162-169. Cui Chen, Wu Meiping, Xia Sihai. Effect of heat treatment on properties of 42CrMo steel surface laser cladding cobalt base coating[J]. Chinese Journal of Lasers, 2020, 47(6): 162-169. [8]Ding L, Hu S, Quan X, et al. Effect of heat treatment on the microstructure and properties of VN alloy/Co-based composite coatings[J]. Surface and Coatings Technology, 2017, 313: 355-360. [9]Guo W M, Jia Z Q, Liu G Q, et al. Effect of post-cladding heat treatment on microstructure and performance of a laser cladded 2Cr17Ni2 steel coating[J]. Journal of Materials Engineering and Performance, 2023, 32: 1778-1789. [10]Chen Z, Li R, Gu J, et al. Laser cladding of Ni60+17-4PH composite for a cracking-free and corrosion resistive coating[J]. International Journal of Modern Physics B, 2020, 33: 2040042. [11]兰东生, 闫献国, 陈 峙, 等. 磁场深冷处理对YG11C硬质合金耐磨性的影响[J]. 金属热处理, 2021, 46(8): 184-188. Lan Dongsheng, Yan Xianguo, Chen Zhi, et al. Effect of magnetic field cryogenic treatment on wear resistance of YG11C cemented carbide[J]. Heat Treatment of Metals, 2021, 46(8): 184-188. [12]张连旺, 牛 伟, 孙荣禄, 等. 热处理对激光熔覆CoCrFeNiSi2.0高熵合金涂层组织与性能的影响[J]. 表面技术, 2022, 51(12): 340-349. Zhang Lianwang, Niu Wei, Sun Ronglu, et al. Effect of heat treatment on microstructure and properties of laser cladding CoCrFeNiSi2.0 high entropy alloy coating[J]. Surface Technology, 2022, 51(12): 340-349. [13]蒋一江, 闫献国, 陈 峙, 等. 磁场深冷处理对42CrMo钢耐磨性的影响[J]. 金属热处理, 2020, 45(1): 91-95. Jiang Yijiang, Yan Xianguo, Chen Zhi, et al. Effect of magnetic field cryogenic Treatment on wear resistance of 42CrMo steel[J]. Heat Treatment of Metals, 2020, 45(1): 91-95. [14]戴 衍, 孙 昊, 刘 飞, 等. 含硬质相铁基耐磨堆焊合金的研究进展[J]. 企业技术开发, 2016, 35(8): 74-75, 89. [15]杨 柳, 谢奕心, 鞠玉琳, 等. 贝氏体等温淬火对 Dievar 热作模具钢高温摩擦磨损性能的影响[J]. 金属热处理, 2023, 48(2): 85-93. Yang Liu, Xie Yixin, Ju Yulin, et al. Effect of austempering on high temperature frictional wear property of Dievar hot working die steel[J]. Heat Treatment of Metals, 2023, 48(2): 85-93. [16]刘凌波, 杨贵荣, 宋文明, 等. Ni-WB2复合熔覆层的微观组织及摩擦磨损性能[J]. 金属热处理, 2023, 48(1): 207-216. Liu Lingbo, Yang Guirong, Song Wenming, et al. Microstructure and wear performance of Ni-WB2 composite clad layer[J]. Heat Treatment of Metals, 2023, 48(1): 207-216. |