[1]陈波涛, 王凤康, 曾 杰, 等. 帘线钢小方坯82A铸坯表面和内部缺陷分析[J]. 连铸, 2021(6): 65-70. Chen Botao, Wang Fengkang, Zeng Jie, et al. Analysis of surface and internal defects for continuous casting billet of 82A tire cord steel[J]. Continuous Casting, 2021(6): 65-70. [2]刘加军, 李 倩. 青岛特钢打造线材“皇冠上的明珠”[N]. 中国冶金报, 2021-11-11(001). [3]章 照, 刘荣泉, 朱国荣, 等. 原位分析在改善帘线钢中心偏析上的应用[J]. 现代冶金, 2014, 42(5): 24-26. [4]李江文, 张穗忠, 夏念平, 等. 帘线钢82A大方坯的原位统计分布分析[J]. 冶金分析, 2013, 33(7): 1-9. Li Jiangwen, Zhang Suizhong, Xia Nianping, et al. Original position statistic distribution analysis for the large square billet of 82A tire cord steel[J]. Metallurgical Analysis, 2013, 33(7): 1-9. [5]雷家柳, 赵栋楠, 朱航宇, 等. 高强度帘线钢中氮化钛夹杂的固溶行为分析[J]. 中国冶金, 2018, 28(12): 31-35. Lei Jialiu, Zhao Dongnan, Zhu Hangyu, et al. Analysis of solid solution behavior of titanium nitride inclusion in high strength tire cord steel[J]. China Metallurgy, 2018, 28(12): 31-35. [6]万宝意, 刘宏玉, 周 鹏, 等. 帘线钢V、N微合金化后的组织与冷拉性能变化[J]. 钢铁钒钛, 2014, 35(2): 40-45. Wan Baoyi, Liu Hongyu, Zhou Peng, et al. Changes of microstructures and cold drawing properties of V-N microalloyed tire cord steel[J]. Iron Steel Vanadium Titanium, 2014, 35(2): 40-45. [7]曹亚丹, 常桂华, 王阿鼎, 等. 帘线钢铸坯氧化物夹杂分布研究[J]. 冶金丛刊, 2014(1): 1-4. Cao Yadan, Chang Guihua, Wang Ading, et al. Study on oxide inclusion distribution in bloom of cord steel[J]. Engineering and Technological Research, 2014(1): 1-4. [8]卢伟永. 帘线钢关键质量指标及检测方法浅析[J]. 冶金与材料, 2020, 40(3): 169-170. [9]王笑丹, 任学平, 王 勇. 钢帘线用线材SWRH72A奥氏体晶粒度的快速检测[J]. 河北冶金, 2009(5): 53-54. Wang Xiaodan, Ren Xueping, Wang Yong. Fast examine of grain size of austenite for steel wire SWRH72A for steel curtain[J]. Hebei Metallurgy, 2009(5): 53-54. [10]杨 劼, 任慧平, 刘宗昌. 15Cr12CuSiMoMn钢的奥氏体晶粒长大动力学[J]. 金属热处理, 2022, 47(2): 53-58. Yang Jie, Ren Huiping, Liu Zongchang. Kinetics of austenite grain growth of 15Cr12CuSiMoMn steel[J]. Heat Treatment of Metals, 2022, 47(2): 53-58. [11]Dong Lanfeng, Zhong Yuexian, Ma Qingxian, et al. Dynamic recrystallization and grain growth behavior of 20SiMn low carbon alloy steel[J]. Tsinghua Science and Technology, 2008, 13(5): 609-613. [12]Yang Gengwei, Sun Xinjun, Yong Qilong, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel[J]. Journal of Iron and Steel Research International, 2014, 21(8): 757-764. [13]唐 萌, 程博文, 聂汗春, 等. 1300 MPa级超高强钢的奥氏体晶粒长大行为及数学模型[J]. 江西冶金, 2021, 41(3): 15-19, 71. Tang Meng, Cheng Bowen, Nie Hanchun, et al. Austenite grain growth behavior and mathematical model of 1300 MPa grade ultra-high strength steel[J]. Jiangxi Metallurgy, 2021, 41(3): 15-19, 71. [14]李月云, 胡 磊, 王 雷, 等. SWRS87B-T高碳钢奥氏体晶粒长大规律的研究[J]. 热加工工艺, 2018, 47(24): 167-171. Li Yueyun, Hu Lei, Wang Lei, et al. Study on austenite grain growth behavior of SWRS87B-T high carbon steel[J]. Hot Working Technology, 2018, 47(24): 167-171. [15]徐 鹏, 王宝奇, 冯红喜, 等. 一种磨球用高碳钢奥氏体晶粒长大行为[J]. 热加工工艺, 2018, 47(4): 96-99. Xu Peng, Wang Baoqi, Feng Hongxi, et al. Austenite grain growth behavior of high carbon steel used for grinding balls[J]. Hot Working Technology, 2018, 47(4): 96-99. [16]金桂香, 王福明, 李克非, 等. 82B高碳钢奥氏体晶粒长大行为[J]. 材料热处理学报, 2013, 34(7): 41-46. Jin Guixiang, Wang Fuming, Li Kefei, et al. Austenite grain growth behavior of a 82B high carbon steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(7): 41-46. [17]张志波, 孙新军, 刘清友, 等. 均热过程中低碳钢奥氏体晶粒长大规律研究[J]. 材料热处理学报, 2008, 29(5): 89-92. Zhang Zhibo, Sun Xinjun, Liu Qingyou, et al. Study on austenite grain growth of a low carbon steel in heating process[J]. Transactions of Materials and Heat Treatment, 2008, 29(5): 89-92. [18]张云祥. 高强度线材热加工的组织演变和性能预报系统研究[D]. 武汉: 华中科技大学, 2010: 110-113. Zhang Yunxiang. Systematic reach of prediction for microstructure evolution and property of high strength wire roads[D]. Wuhan: Huazhong University of Science and Technology, 2010. [19]赵 卓, 车 安, 全书仪, 等. 基于激光共聚焦显微镜分析LX72和LX82帘线钢的组织和性能[J]. 金属热处理, 2019, 44(9): 52-57. Zhao Zhuo, Che An, Quan Shuyi, et al. Microstructure and properties of LX72 and LX82 cord steels analyzed by confocal laser scanning microscope[J]. Heat Treatment of Metals, 2019, 44(9): 52-57. [20]吴 微, 梁高飞, 于 艳, 等. 低碳钢固态相变过程的原位观察[J]. 宝钢技术, 2009(4): 27-31. Wu Wei, Liang Gaofei, Yu Yan, et al. In situ observation of the solid phase transformation of a low carbon steel[J]. Baosteel Technology, 2009(4): 27-31. [21]惠亚军, 潘 辉, 李文远, 等. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139. Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on heating schedule of 1000 MPa grade Nb-Ti microalloyed ultra-high strength steel[J]. Acta Metallurgica Sinica, 2017, 53(2): 129-139. [22]彭 则, 李萌蘖, 卜恒勇, 等. 42CrMo钢加热过程中的奥氏体晶粒尺寸演变[J]. 金属热处理, 2021, 46(5): 25-31. Peng Ze, Li Mengnie, Bu Hengyong, et al. Evolution of austenite grain size of 42CrMo steel during heating[J]. Heat Treatment of Metals, 2021, 46(5): 25-31. [23]高彩茹, 霍喜伟, 宋玉卿, 等. 500 MPa级门架型钢的奥氏体晶粒长大行为[J]. 金属热处理, 2022, 45(1): 139-142. Gao Cairu, Huo Xiwei, Song Yuqing, et al. Austeritic grain growing behavior of 500 MPa grade gantry steel[J]. Heat Treatment of Metals, 2022, 45(1): 139-142. [24]权国政, 温志航, 沈 力, 等. 镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J]. 材料导报, 2021, 35(18): 18124-18130. Quan Guozheng, Wen Zhihang, Shen Li, et al. Game relation between grain refinement and grain coarsening in thermoplastic deformation of nickel-based superalloy and its evolution[J]. Materials Reports, 2021, 35(18): 18124-18130. [25]邱春林, 孙艳涛, 肖 宇, 等. 多元微合金低碳钢的奥氏体晶粒生长及淬火硬度[J]. 宽厚板, 2017, 23(2): 7-10. Qiu Chunlin, Sun Yantao, Xiao Yu, et al. Austenite grain growth and quenched hardness of multi-microalloyed low carbon steel[J]. Wide and Heavy Plate, 2017, 23(2): 7-10. [26]罗文英, 苏新生, 刘宪民, 等. 18Ni马氏体时效钢奥氏体晶粒长大规律研究[J]. 热加工工艺, 2012, 41(18): 217-220. Luo Wenying, Su Xinsheng, Liu Xianmin, et al. Study on austenite grain growth behavior of 18Ni maraging steel[J]. Hot Working Technology, 2012, 41(18): 217-220. |