[1]周丽娜, 杨晓峰, 刘 明, 等. 8Cr4Mo4V高温轴承钢热处理及表面改性技术的研究进展[J]. 轴承, 2021(8): 1-10. Zhou Lina, Yang Xiaofeng, Liu Ming, et al. Research progress on heat treatment and surface modification technology of 8Cr4Mo4V high-temperature bearing steel[J]. Bearing, 2021(8): 1-10. [2]Anderson W J, Bamberger E N, Zaretsky E V. Rolling-element bearing life from 400 ° to 600 °[R]. Washington, D. C.: NASA, 1969. [3]Signer H, Bamberger E N, Zaretsky E V. Parametric study of the lubrication of thrust loaded 120 mm bore ball bearings to 3 million DN[R]. Washington, D. C.: NASA, 1973. [4]Zaretsky E V. Bearing and gear steels for aerospace applications[R]. Washington, D. C.: NASA, 1990. [5]James L Lauer, Norbert Marxer, William R Jones Jr. Optical and other properties changes of M-50 bearing steel surfaces for different lubricants and additives prior to scuffing[R]. Washington, D. C.: NASA, 1984. [6]Parker R J, Zaretsky E V. Rolling-element fatigue lives of through-hardened bearing materials[R]. Washington, D. C.: NASA, 1971. [7]Jiang Hongwei, Song Yanran, Wu Yucheng, et al. Microstructure evolution and mechanical anisotropy of M50 steel ball bearing rings during multi-stage hot forging[J]. Chinese Journal of Aeronautics, 2021, 34(11): 254-266. [8]Glover Douglas. A ball-rod rolling contact fatigue tester[C]//American Society for Testing and Materials, 1982: 107-124. [9]郭 军, 杨卯生, 卢德宏, 等. Cr4Mo4V轴承钢滚动接触疲劳和磨损性能研究[J]. 摩擦学学报, 2017, 37(2): 155-166. Guo Jun, Yang Maosheng, Lu Dehong, et al. Rolling contact fatigue and wear characteristics of Cr4Mo4V bearing steel[J]. Tribology, 2017, 37(2): 155-166. [10]Baughman R A. Effect of hardness, surface finish, and grain size on rolling-contact fatigue life of M-50 bearing steel[J]. Journal of Basic Engineering, 1960, 82(2): 287-294. [11]Voskamp A P. Material response to rolling contact loading[J]. Journal of Tribology, 1985, 107(3): 359-366. [12]Dimatteo N D, Lampman S R. ASM Handbook, Fatigue and Fracture[M]. ASM International, 1996, 331-336. [13]Evans M H. White structure flaking (WSF) in wind turbine gearbox bearings: Effects of ‘butterflies’ and white etching cracks (WECs)[J]. Materials Science and Technology, 2012, 28(1): 3-22. [14]Fusaro R L. Mechanisms of graphite fluoride[(CFx)n]lubrication[J]. Wear, 1979, 53(2): 303-315, 317-323. [15]Scott D. Debris examination-A prognostic approach to failure prevention[J]. Wear, 1975, 34(1): 15-22. [16]Wellinger K, Uetz H, Gommel G. Abrasive wear caused by granular mineral solids[J]. Wear, 1968, 11(4): 313-314. [17]何斌锋. Ti6Al4V合金激光熔覆Ni基自润滑涂层的组织和性能[J]. 金属热处理, 2021, 46(6): 195-199. He Binfeng. Microstructure and properties of laser clad Ni-based self-lubricating coating on Ti6Al4V alloy[J]. Heat Treatment of Metals, 2021, 46(6): 195-199. [18]钱 钰, 崔功军, 卞灿星, 等. WS2增强CoCrTi复合材料的制备及高温摩擦学性能[J]. 金属热处理, 2021, 46(12): 94-99. Qian Yu, Cui Gongjun, Bian Canxing, et al. Preparation and high-temperature tribological properties of WS2 reinforced CoCrTi composites[J]. Heat Treatment of Metals, 2021, 46(12): 94-99. [19]李 德, 单琼飞, 王 鑫, 等. GCr15轴承钢低温离子渗硫层的组织与耐磨性能[J]. 金属热处理, 2022, 47(12): 181-187. Li De, Shan Qiongfei, Wang Xin, et al. Microstructure and wear resistance of GCr15 bearing steel with low-temperature plasma sulfurizing coatings[J]. Heat Treatment of Metals, 2022, 47(12): 181-187. |