[1]陈学东, 范志超, 崔 军, 等. 我国压力容器高性能制造技术进展[J]. 压力容器, 2021, 38(10): 1-15. Chen Xuedong, Fan Zhichao, Cui Jun, et al. Progress in high-performance manufacturing technology for pressure vessels in China[J]. Pressure Vessel Technology, 2021, 38(10): 1-15. [2]杜军毅, 刘志颖. 中国压力容器用锻件的技术进展[J]. 压力容器, 2014, 31(9): 51-57, 67. Du Junyi, Liu Zhiying. Technical progress of Chinese forgings for large pressure vessels[J]. Pressure Vessel Technology, 2014, 31(9): 51-57, 67. [3]蒋良雄. 超大直径超大壁厚渣油加氢反应器的国产化研制[J]. 能源化工, 2016, 37(1): 79-87. Jiang Liangxiong. Study and domestic manufacture of residual oil hydrogenation reactor with oversized diameter and wall thickness[J]. Energy Chemical Industry, 2016, 37(1): 79-87. [4]刘正东, 杨 钢, 程世长, 等. 2.25Cr-1Mo钢回火过程中碳化物析出顺序的研究[J]. 金属热处理, 2005, 30(4): 32-34. Liu Zhengdong, Yang Gang, Cheng Shichang, et al. Investigation of carbide precipitation order of 2. 25Cr-1Mo steel during tempering[J]. Heat Treatment of Metals, 2005, 30(4): 32-34. [5]张广威, 马窦琴, 林乙丑, 等. 回火温度和时间对2.25Cr-1Mo-0.25V钢组织和性能的影响[J]. 金属热处理, 2020, 45(3): 200-203. Zhang Guangwei, Ma Douqin, Lin Yichou, et al. Effects of tempering temperature and time on microstructure and properties of 2.25Cr-lMo-0.25V steel[J]. Heat Treatment of Metals, 2020, 45(3): 200-203. [6]周维海, 王存宇, 张文辉, 等. 2.25Cr-1Mo-0.25V钢的晶粒长大规律[J]. 金属热处理, 2005, 30(11): 35-37. Zhou Weihai, Wang Cunyu, Zhang Wenhui, et al. Grain growth behaviors of steel 2.25Cr-1Mo-0.25V[J]. Heat Treatment of Metals, 2005, 30(11): 35-37. [7]王月乔, 李 其. 缓慢加热条件下2.25Cr1Mo0.25V钢晶粒细化工艺研究[J]. 大型铸锻件, 2018(6): 27-29. Wang Yueqiao, Li Qi. Research on grain refinement process of 2.25Cr1Mo0.25V steel under slow heating[J]. Heavy Casting and Forging, 2018(6): 27-29. [8]李 其, 陈海堤, 杨云民, 等. 组织遗传对2.25Cr-1Mo-0.25V钢晶粒度的影响[J]. 大型铸锻件, 2012(6): 19-21. Li Qi, Chen Haidi, Yang Yunmin, et al. The influence of structure heredity on 2.25Cr-1Mo-0.25V steel grain size[J]. Heavy Casting and Forging, 2012(6): 19-21. [9]宋宏威, 蒋 波, 陈秋华, 等. SA-336M-F22V钢厚壁大锻件制造工艺[J]. 大型铸锻件, 2010(5): 31-33. Song Hongwei, Jiang Bo, Chen Qiuhua, et al. Technological study on producing the thickness wall big forging of SA-336M-F22V steel[J]. Heavy Casting and Forging, 2010(5): 31-33. [10]刘鑫刚, 聂绍珉, 任运来. 高温扩散对2.25Cr-1Mo-0.25V钢锭组织与性能的影响[J]. 金属热处理, 2007, 32(12): 81-84. Liu Xingang, Nie Shaomin, Ren Yunlai. Effects of high temperature diffusion on microstructure and properties of 2.25Cr-1Mo-0.25V steel ingot[J]. Heat Treatment of Metals, 2007, 32(12): 81-84. [11]Jiang Zhonghua, Wang Pei, Li Dianzhong, et al. Influence of the decomposition behavior of retained austenite during tempering on the mechanical properties of 2.25Cr-1Mo-0.25V steel[J]. Materials Science and Engineering A, 2019, 742: 540-552. [12]蒋中华, 王 培, 李殿中, 等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51(8): 925-934. Jiang Zhonghua, Wang Pei, Li Dianzhong, et al. Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metallurgica Sinica, 2015, 51(8): 925-934. [13]Luo Y, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Materials Science and Engineering A, 2010, 527(15): 3433-3437. [14]李学达, 尚成嘉, 韩昌柴, 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52(9): 1025-1035. Li Xueda, Shang Chengjia, Han Changchai, et al. Influence of necklace type M-A constitutent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metallurgica Sinica, 2016, 52(9): 1025-1035. |