[1]秦真波, 吴 忠, 胡文彬. 表面工程技术的应用及其研究现状[J]. 中国有色金属学报, 2019, 29(9): 2192-2216. Qin Zhenbo, Wu Zhong, Hu Wenbin. Application and progress of surface engineering technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2192-2216. [2]李绍宏, 何文超, 张 旭, 等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁, 2021, 56(3): 13-22, 40. Li Shaohong, He Wenchao, Zhang Xu, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron and Steel, 2021, 56(3): 13-22, 40. [3]陈 超. 金属表面等离子电解沉积陶瓷涂层的制备及性能研究[D]. 北京: 北京理工大学, 2017. Chen Chao. Plasma electrolytic deposition on metal surface[D]. Beijing: Beijing Institute of Technology, 2017. [4]张 荣, 马 颖, 郝 远. 45#钢液相等离子体电解渗透表面改性技术研究[J]. 新技术新工艺, 2009(4): 86-89. Zhang Rong, Ma Ying, Hao Yuan. Surface modification technology research on 45# steel liquid-phase infiltration plasma electrolytic saturation[J]. New Technology and New Process, 2009(4): 86-89. [5]Uglov V V, Kuleshov A K, Fedotova J A, et al. Plasma immersion N and N+C implantation into high-speed tool steel: Surface morphology, phase composition and mechanical properties[J]. Surface & Coatings Technology, 2001, 142: 406-411. [6]黄洁雯, 杨 群, 樊新民, 等. 液相等离子电解技术的研究进展与应用[C]//第十次全国热处理大会论文集. 2011: 243-247. [7]汪 建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014. Wang Jian. Experimental study of radio frequency inductively coupled plasma and mode transition[D]. Hefei: University of Science and Technology of China, 2014. [8]朱宗宁. 活塞环表面液相等离子体电解渗氮及改性层性能研究[D]. 镇江: 江苏大学, 2020. Zhu Zongning. Study on the plasma electrolytic nitriding on the surface of piston ring in solution and performances of the modified layer[D]. Zhenjiang: Jiangsu University, 2020. [9]朱宗宁, 梅德清, 赵卫东, 等. 钢铁表面液相等离子体电解渗氮技术研究进展[J]. 金属热处理, 2019, 44(12): 204-209. Zhu Zongning, Mei Deqing, Zhao Weidong, et al. Research progress of liquid phase plasma electrolytic nitriding on steel surface[J]. Heat Treatment of Metals, 2019, 44(12): 204-209. [10]李 杰, 沈德久, 王玉林, 等. 液相等离子体电解渗透技术[J]. 金属热处理, 2005, 30(9): 63-67. Li Jie, Shen Dejiu, Wang Yuli, et al. Plasma electrolytic saturation technique in solution[J]. Heat Treatment of Metals, 2005, 30(9): 63-67. [11]Nie X, Wilson A, Yerokhin A L, et al. Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels-ScienceDirect[J]. Surface & Coatings Technology, 2001, 139(2/3): 135-142. [12]柳永康, 谢发勤, 胡宗纯, 等. 时间和电压对TC4合金表面等离子碳氮共渗层的影响[J]. 中国表面工程, 2007, 20(5): 37-40. Liu Yongkang, Xie Faqin, Hu Zongchun, et al. The effect of time and voltageon plasma carbonitriding layer of TC4 alloy[J]. China Surface Engineering, 2007, 20(5): 37-40. [13]盛银莹. 钢表面电解液等离子体微弧碳氮共渗层的制备及性能研究[D]. 广州: 暨南大学, 2016. Sheng Yinying. Preparation and performance of the carbonitriding layers by plasma electrolytic carbonitriding on the steel surface[D]. Guangzhou: Jinan University, 2016. [14]潘红梅, 何 翔. 等离子体快速渗氮技术的实现[J]. 中南民族大学学报(自然科学版), 2007(2): 65-68. Pan Hongmei, He Xiang. Implementing of rapid plasma nitriding technique[J]. Journal of South-Central Minzu University(Natural Science Edition), 2007(2): 65-68. [15]吴 杰, 张亦凡, 金小越, 等. T8钢液相等离子体电解渗碳的扩散过程和光谱学分析[J]. 材料研究学报, 2016, 30(9): 655-661. Wu Jie, Zhang Yifan, Jin Xiaoyue, et al. Diffusion coefficient and spectroscopy analysis during plasma electrolytic carburizing on T8 carbon steel[J]. Chinese Journal of Materials Research, 2016, 30(9): 655-661. [16]薛文斌, 金 乾, 刘 润, 等. 甘油浓度对不锈钢表面液相等离子体电解渗透过程的影响[J]. 中国有色金属学报, 2013, 23(3): 882-887. Xue Wenbin, Jin Qian, Liu Run, et al. Influence of glycerin concentration on plasma electrolytic saturation process of stainless steel surface[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 882-887. [17]郭文廷. 20CrMnTi液相等离子电解碳氮共渗研究[D]. 南昌: 南昌航空大学, 2012. Guo Wenting. Study on electrolytic plasma carbonitriding of 20CrMnTi[D]. Nanchang: Nanchang Hangkong University, 2012. [18]杨 群, 樊新民, 黄洁雯. 40Cr钢液相等离子体电解氮碳共渗层的组织与性能[J]. 金属热处理, 2012, 37(6): 77-80. Yang Qun, Fan Xinmin, Huang Jiewen. Microstructure and properties of plasma electrolytic nitrocarburizing coating on 40Cr steel[J]. Heat Treatment of Metals, 2012, 37(6): 77-80. [19]Fan Xinmin, Huang Jiewen, Yang Qun, et al. Plasma electrolytic carbonitriding of 20CrMnTi steel[J]. Advanced Materials Research, 2011, 154: 1393-1396. [20]张蓬予, 朱新河, 付景国, 等. 电压对低碳钢表面液相等离子体电解碳氮共渗层的摩擦学性能影响[J]. 科学技术与工程, 2020, 20(20): 8107-8112. Zhang Pengyu, Zhu Xinhe, Fu Jingguo, et al. Effect of voltage on tribological properties of plasma electrolytic carbonitriding layer on low carbon steel surface[J]. Science Technology and Engineering, 2020, 20(20): 8107-8112. [21]王振宁, 杨宾峰, 游红伟. 液相等离子电解渗碳氮在高速钢铣刀后处理上的应用[J]. 热加工工艺, 2008, 37(16): 61-62. Wang Zhenning, Yang Binfeng, You Hongwei. Application of later disposal for high speed steel milling-tool by plasma electrolysis carbonitriding method in solution[J]. Hot Working Technology, 2008, 37(16): 61-62. [22]袁 洋, 罗状子, 田 军. 铝合金表面微弧氧化耐磨润滑涂层[J]. 材料保护, 2002, 35(5): 4-6. Yuan Yang, Luo Zhuangzi, Tian Jun. Antiwear and lubrication coatings on aluminum alloy by microarc oxidation[J]. Materials Protection, 2002, 35(5): 4-6. [23]Mizuno T, Ohmori T, Akimoto T, et al. Production of heat during plasma electrolysis in liquid[J]. Japanese Journal of Applied Physics, 2000, 39(10): 6055-6061. [24]Bizi-Bandoki P, Benayoun S, Valette S, et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment[J]. Applied Surface Science, 2011, 257(12): 5213-5218. [25]智二攀. 模具钢液相等离子体电解渗透的初步研究[D]. 广州: 华南理工大学, 2010. Zhi Erpan. Research on plasma electrolytic saturation in liquid of die steel[D]. Guangzhou: South China University of Technology, 2010. |