[1]Du G Y, Tan Z, Ba D C, et al. Damping properties of a novel porous Mg-Al alloy coating prepared by arc ion plating[J]. Surface and Coatings Technology, 2014, 238: 139-142. [2]Han X N, Li Q F, Wang H D, et al. Damping capacity and mechanical properties of Fe3Cr2NiCuAlx medium entropy alloys by tuning phase constituents[J]. Journal of Alloys and Compounds, 2022, 910: 164884. [3]Yan S, Li N, Wang J, et al. Effect of minor Zr element on microstructure and properties of Fe-16Cr-2.5Mo damping alloys[J]. Journal of Alloys and Compounds, 2018, 740: 587-594. [4]Anes V, Lage Y E, Vieira M, et al. Torsional and axial damping properties of the AZ31B-F magnesium alloy[J]. Mechanical Systems and Signal Processing, 2016, 79: 112-122. [5]Alaneme K K, Umar S. Mechanical behaviour and damping properties of Ni modified Cu-Zn-Al shape memory alloys[J]. Journal of Science: Advanced Materials and Devices, 2018, 3(3): 371-379. [6]Chang S H, Liao B S, Gholami Kermanshahi M. Effect of Co additions on the damping properties of Cu-Al-Ni shape memory alloys[J]. Journal of Alloys and Compounds, 2020, 847: 156560. [7]Wang Q, Yao C, Lu D, et al. Effect of combined use of inoculation and hot rolling on microstructures and damping property of a Cu-Al-Ni-Mn-Ti shape memory alloy[J]. Materials Letters, 2023, 330: 133392.
[8]Ning R, Zhao Y, Sun S, et al. Tailoring damping properties by electron irradiation in Ni-Mn-Ga shape memory alloys in a wide high-temperature range[J]. Journal of Alloys and Compounds, 2021, 865: 158557. [9]Jiang H, Cao S, Ke C, et al. Fine-Grained bulkNiTi shape memory alloy fabricated by rapid solidification process and its mechanical properties and damping performance[J]. Journal of Materials Science and Technology, 2013, 29(9): 855-862. [10]Wang X, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect[J]. Scripta Materialia, 2018, 146: 246-250. [11]Wang E, Guo C, Zhou P, et al. Fabrication, mechanical properties and damping capacity of shape memory alloy NiTi fiber-reinforced metal-intermetallic-laminate (SMAFR-MIL) composite[J]. Materials and Design, 2016, 95: 446-454. [12]辛 燕, 王福星. Ni55Mn25Ga18Ti2高温形状记忆合金的热循环稳定性[J]. 工程科学学报, 2022, 44(6): 1020-1026. Xin Yan, Wang Fuxing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering, 2022, 44(6): 1020-1026. [13]李启泉, 李 岩, 马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(2): 03142-03147. Li Qiquan, Li Yan, Ma Yuehui. Research progress of titanium-based high-temperature shape memory alloy[J]. Materials Reports, 2020, 34(2): 03142-03147. [14]Yang L, Jiang X, Sun H, et al. Effect of Ta addition on microstructures, mechanical and damping properties of Cu-Al-Mn-Ti alloy[J]. Journal of Materials Research and Technology, 2021, 15: 3825-3835. [15]Maier H J, Karsten E, Paulsen A, et al. Microstructural evolution and functional fatigue of a Ti-25Ta high-temperature shape memory alloy[J]. Journal of Materials Research, 2017, 32(23): 4287-4295. [16]Fedotov S G, Chelidze T V, Kovneristyy Y K, et al. Phase transformations during heating of metastable alloys of the Ti-Ta system[J]. Physics of Metals and Metallography, 1986, 62: 109. [17]Buenconsejo P J, Kim H Y, Miyazaki S. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys[J]. Acta Materialia, 2009, 57: 2509-2515. [18]Miyazaki S, Kim H Y, Buenconsejo P J. Development of high temperature Ti-Ta shape memory alloys[C]//ESOMAT 2009, 2009: 01003. [19]Jun J H. Damping behavior of Mg-Zn-Al casting alloys[J]. Materials Science and Engineering A, 2016, 665: 86-89. |