[1]Khatkhatay F, Jiao L, Jian J, et al. Superior corrosion resistance properties of TiN-based coatings on zircaloy tubes in supercritical water[J]. Journal of Nuclear Materials, 2014, 451: 346-351. [2]Jiang J S, Zhai H L, Gong P F, et al. In-situ study on the tensile behavior of Cr-coated zircaloy for accident tolerant fuel claddings[J]. Surface and Coatings Technology, 2020, 394: 1-9. [3]Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process[J]. Corrosion Science, 2020, 167: 1-15. [4]Kim H G, Ali A, Hattar K, et al. Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux[J]. Nuclear Engineering and Design, 2020, 362: 1-11. [5]李 锐, 刘 彤. 脉冲激光熔覆制备ATF包壳Cr涂层的工艺与性能研究[J]. 核动力工程, 2019, 40(1): 74-77. Li Rui, Liu Tong. Study on process and properties of pulse laser prepared Cr coating for accident tolerant fuel claddings[J]. Nuclear Power Engineering, 2019, 40(1): 74-77. [6]Han X C, Wang Y, Peng S M, et al. Oxidation behavior of FeCrAl coated Zry-4 under high temperature steam environment[J]. Corrosion Science, 2019, 149: 45-53. [7]Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. [8]Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding[J]. Journal of Nuclear Materials, 2016, 478: 236-244. [9]Daub K, Nieuwenhove R V, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4[J]. Journal of Nuclear Materials, 2015, 467: 260-270. [10]Roberts D A. Magnetron sputtering and corrosion of Ti-Al-C and Cr-Al-C coatings for Zr-alloy nuclear fuel cladding[D]. State of Tennessee: The University of Tennessee, Knoxville, 2016. [11]HernNdez L C, Ponce L, Fundora A, et al. Nanohardness and residual stress in TiN coatings[J]. Materials, 2011, 4: 929-940. [12]Kim I, Khatkhatay F, Jiao L, et al. TiN-based coatings on fuel cladding tubes for advanced nuclear reactors[J]. Journal of Nuclear Materials, 2012, 429: 143-148. [13]Meng C Y, Yang L, Wu Y W, et al. Study of the oxidation behavior of CrN coating on Zr alloy in air[J]. Journal of Nuclear Materials, 2019, 515: 354-369. [14]Lin J L, Sproul W D, Moore J J. Tribological behavior of thick CrN coatings deposited by modulated pulsed power magnetron sputtering[J]. Surface and Coatings Technology, 2012, 206: 2474-2483. [15]Lin J L, Sproul W D, Moore J J, et al. High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering[J]. Surface and Coatings Technology, 2011, 205: 3226-3234. [16]Ang C, Kemery C, Katoh Y T, et al. Electroplating chromium on CVDSiC and SiCf-SiC advanced cladding via PyC compatibility coating[J]. Journal of Nuclear Materials, 2018, 503: 245-249. [17]Bao W C, Xue J X, Liu J X, et al. Coating SiC on zircaloy-4 by magnetron sputtering at room temperature[J]. Journal of Alloys and Compounds, 2018, 730: 81-87. [18]王晓婧, 刘艳红, 冯 硕, 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究[J]. 真空科学与技术学报, 2018, 38(4): 332-338. Wang Xiaojing, Liu Yanhong, Feng Shuo, et al. Synthesis and property characterization of magnetron sputtered SiC/Cr coatings on Zr-based alloy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(4): 332-338. [19]Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding[J]. Surface and Coatings Technology, 2018, 347: 13-19. [20]Kuprin A S, Belous V A, Voyevodin V N, et al. Irradiation resistance of vacuum arc chromium coatings for zirconium alloy fuel claddings[J]. Journal of Nuclear Materials, 2018, 510: 163-167. [21]马建光, 朱卫华, 朱红梅, 等. Zr-4合金表面激光熔覆不同类型TiN粉末的组织与性能[J]. 金属热处理, 2017, 42(1): 115-119. Ma Jianguang, Zhu Weihua, Zhu Hongmei, et al. Microstructure and properties of laser cladding with different TiN powder on Zr-4 alloy surface[J]. Heat Treatment of Metals, 2017, 42(1): 115-119. [22]黄 旭, 张家诚, 练国富, 等. 超高速激光熔覆研究现状及应用[J]. 机床与液压, 2021, 49(6): 151-155. Huang Xu, Zhang Jiacheng, Lian Guofu, et al. Research status and application of extreme high speed cladding[J]. Machine Tool and Hydraulics, 2021, 49(6): 151-155. [23]朱福栋, 朱必云. 激光熔覆制备复合材料的研究现状及进展[J]. 中国新技术新产品, 2016(7): 8. [24]严艳芹, 邱长军, 黄 鹤, 等. 热处理温度对Cr/Al涂层组织结构及性能的影响[J]. 表面技术, 2017, 46(12): 78-83. Yan Yanqin, Qiu Changjun, Huang He, et al. Effects of heat treatment temperature on microstructure and properties of Cr/Al coatings[J]. Surface Technology, 2017, 46(12): 78-83. [25]李润杰, 章昕怡, 康嘉杰, 等. 不同温度真空热处理对FeCrMoCBY非晶合金涂层组织结构与摩擦学性能的影响研究[C]//第二十一届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 2021: 73-81. Li Runjie, Zhang Xinyi, Kang Jiajie, et al. Effect of vacuum heat treatment on microstructure and tribological properties of FeCrMoCBY amorphous alloy coating at different temperatures[C]//Proceedings of the 21st Annual Academic Exchange Conference of National Prospecting Engineering (Geotechnical Drilling Engineering). 2021: 73-81. [26]杨毕学, 揭晓华, 杨祥伟. 非晶态Cr-C合金镀层的晶化规律[J]. 中国表面工程, 2011, 24(3): 49-52. Yang Bixue, Jie Xiaohua, Yang Xiangwei. Crystallization regularity of amorphous Cr-C alloy coating[J]. China Surface Engineering, 2011, 21(3): 49-52. [27]安百刚, 赵国鹏. 电沉积非晶态Cr-C合金镀层结构变化对硬度的影响[J]. 材料保护, 2002, 35(4): 15-16. An Baigang, Zhao Guopeng. Effect of structure change on microhardness of electrodepositing amorphous Cr-C alloy plating[J]. Materials Protection, 2002, 35(4): 15-16. [28]Kirak S, Choi M H, Kirak S, et al. Effects of heat treatment conditions on the interfacial reactions and crack propagation behaviors in electroless Ni/electroplated Cr coatings[J]. Microelectronics and Packaging Society, 2016, 23(3): 69-75. [29]李承泽, 尤俊华, 白鹤山, 等. 高熵合金的热处理综述[J]. 材料热处理学报, 2020, 41(5): 1-12. Li Chengze, You Junhua, Bai Heshan, et al. A review of heat treatment of high entropy alloys[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 1-12. [30]Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and process[J]. Corrosion Science, 2020, 167: 108537. [31]胡小刚, 董 闯, 陈宝清, 等. 电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能[J]. 表面技术, 2019, 48(2): 207-219. Hu Xiaogang, Dong Chuang, Chen Baoqing, et al. Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel cladding[J]. Surface Technology, 2019, 48(2): 207-219. |