[1]刘 佳, 郭子豪, 李皓琪, 等. 铜材料应用现状及发展建议[J]. 科技创新与应用, 2022, 12(16): 140-143. [2]姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92. Jiang Yexin, Lou Huafen, Xie Haofeng, et al. Development status and prospects of advanced copper alloy[J]. Strategic Study of CAE, 2020, 22(5): 84-92. [3]米绪军, 娄花芬, 解浩峰, 等. 我国先进铜基材料发展战略研究[J]. 中国工程科学, 2023, 25(1): 96-103. Mi xujun, Lou Huafen, Xie Haofeng, et al. Development strategy for advanced copper-based materials in China[J]. Strategic Study of CAE, 2023, 25(1): 96-103. [4]袁孚胜. 铜及铜合金板带材的生产现状及发展趋势[J]. 有色冶金设计与研究, 2021, 42(2): 13-15, 24. Yuan Fusheng. Status quo and development trend of copper and copper alloy plate & strip products[J]. Nonferrous Metals Engineering and Research, 2021, 42(2): 13-15, 24. [5]黄 富, 余方新, 冯桄波, 等. 高强铜钛合金的发展与应用[J]. 特种铸造及有色合金, 2020, 40(5): 502-506. Huang Fu, Yu Fangxin, Feng Guangbo, et al. Development and application of high strength and high elasticity copper-titanium alloys[J]. Special Casting and Nonferrous Alloys, 2020, 40(5): 502-506. [6]郑良玉, 欧阳好, 巢国辉, 等. 高强高弹代镀铜钛合金研究进展[J]. 有色金属加工, 2019, 48(5): 1-6. Zheng Liangyu, Ouyang Hao, Chao Guohui, et al. Research progress on high strength and high elasticity copper-titanium alloy for substituting beryllium bronze[J]. Nonferrous Metals Processing, 2019, 48(5): 1-6. [7]张 楠, 李振华, 姜训勇, 等. Ti含量对Cu-Ti合金时效过程的影响[J]. 材料热处理学报, 2016, 37(3): 36-40. Zhang Nan, Li Zhenhua, Jiang Xunyong, et al. Influence of Ti content on aging process of Cu-Ti alloys[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 36-40. [8]Fukamachi Kazuhiko. Detailed relationship between the microstructure and properties of age-hardened Cu-4at%Ti alloy[J]. Materials Today Communications, 2023, 34: 105202. [9]Huang L, Cui Z, Meng X, et al. Effects of microelements on the microstructure evolution and properties of ultra high strength Cu-Ti alloys[J]. Materials Science and Engineering A, 2021, 823: 141581. [10]Liu J, Xian H W, Tingting G, et al. Microstructural evolution and properties of aged Cu-3Ti-3Ni alloy[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1162-1167. [11]Liu J, Wang X, Guo T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1199-1204. [12]Liu J, Wang X, Ran Q, et al. Microstructure and properties of Cu-3Ti-1Ni alloy with aging process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3183-3188. [13]Rouxel B, Cayron C, Bornand J, et al. Micro-addition of Fe in highly alloyed Cu-Ti alloys to improve both formability and strength[J]. Materials and Design, 2022, 213: 110340. [14]类成龙. Fe-Ni-Ti三元合金体系相界面反应研究[D]. 青岛: 中国石油大学(华东), 2009. Lei Chenglong. Studies on phase interface reaction of Fe-Ni-Ti ternary system[D]. Qingdao: China University of Petroleum (East China), 2009. [15]Yang Huiya, Bu Yeqiang, Wu Jinming, et al. High strength, high conductivity and good softening resistance Cu-Fe-Ti alloy[J]. Journal of Alloys and Compounds, 2022, 925: 166595. [16]Semboshi S, Hinamoto E, Iwase A. Age-hardening behavior of a single-crystal Cu-Ti alloy[J]. Materials Letters, 2014, 131: 90-93. |