[1]张磊峰, 宋仁伯, 赵 超, 等. 新型汽车用钢—低密度高强韧钢的研究进展[J]. 材料导报, 2014, 28(19): 111-118, 129. Zhang Leifeng, Song Renbo, Zhao Chao, et al. Research progress of new automotive steel-low-density high strength toughness steel[J]. Materials Reports, 2014, 28(19): 111-118, 129. [2]秦唯铭, 杜 冰, 朱绍伟, 等. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 237-242. Qin Weiming, Du Bing, Zhu Shaowei, et al. Effect of environment temperature on uniaxial tensile properties of long glass fiber reinforced polypropylene[J]. Materials Reports, 2023, 37(20): 237-242. [3]李光瀛, 王 利, 马鸣图, 等. 第3代先进高强度钢AHSS汽车板的开发[J]. 轧钢, 2019, 36(5): 1-13. Li Guangying, Wang Li, Ma Mingtu, et al. Development of 3rd generation advanced high strength steel for automotive[J]. Steel Rolling, 2019, 36(5): 1-13. [4]Bykov O, Sydorchuk O, Myroniuk L, et al. X-ray analysis of features of both crystalline structure of main phases formation and properties of 4Kh4N5M4F2 steel (RATE steel) at handling[J]. Metallofizika i Noveishie Tekhnologii, 2021, 43(11): 1523-1536. [5]Kim H, Suh D, Kim J N. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 784-795. [6]王英虎. 汽车用高强韧Fe-Mn-Al-C系低密度钢研究进展[J]. 铸造技术, 2019, 40(8): 868-873. Wang Yinghu. Research progress of Fe-Mn-Al-C low density steel with high strength and toughness for automobile[J]. Foundry Technology, 2019, 40(8): 868-873. [7]苏宏东, 樊 伟, 冯运莉. 退火温度对冷轧Fe-0.4C-10Mn-6Al高强钢组织与力学性能的影响[J]. 金属热处理, 2022, 47(5): 126-131. Su Hongdong, Fan Wei, Feng Yunli. Effect of annealing temperature on microstructure and mechanical properties of cold-rolled Fe-0.4C-10Mn-6Al high strength steel[J]. Heat Treatment of Metals, 2022, 47(5): 126-131. [8]侯美伶, 李晨潇, 孔祥伟, 等. 热处理工艺对Fe-Mn-Al-C钢组织和性能的影响[J]. 特殊钢, 2023, 44(2): 96-100. Hou Meiling, Li Chenxiao, Kong Xiangwei, et al. Effect of heat treatment process on microstructure and properties of Fe-Mn-Al-C steel[J]. Special Steel, 2023, 44(2): 96-100. [9]Sheng Weiqin, Yu Liu, Qing Guohao. High carbon microalloyed martensitic steel with ultrahigh strength-ductility[J]. Materials Science and Engineering A, 2016, 663: 151-156. [10]田 苗, 陈婷婷, 马 进, 等. 不同热处理工艺对ZG20SiMn钢奥氏体化后组织和力学性能的影响[J]. 热加工工艺, 2022, 51(10): 118-121. Tian Miao, Chen Tingting, Ma Jin, et al. Effects of different heat treatment processes on microstructure and mechanical properties of ZG20SiMn steel after austenitization[J]. Hot Working Technology, 2022, 51(10): 118-121. [11]杨 旗, 王俊峰, 丛 郁, 等. 轻质钢的研究进展(一)—富Al无间隙原子钢和铁素体轻质钢[J]. 宝钢技术, 2015, 8(3): 1-10. Yang Qi, Wang Junfeng, Cong Yu, et al. State of knowledge on lightweight steels(Part Ⅰ)—Al-rich interstitial-free steels and ferritic lightweight steels[J]. Baosteel Technology, 2015, 8(3): 1-10. [12]杨 旗, 丛 郁, 王俊峰, 等. 轻质钢的研究进展(二)—铁素体-奥氏体双相轻质钢和奥氏体轻质钢[J]. 宝钢技术, 2015, 8(4): 1-8. Yang Qi, Cong Yu, Wang Junfeng, et al. State of knowledge on lightweight steels(Part Ⅱ)——Ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels[J]. Baosteel Technology, 2015, 8(4): 1-8. [13]Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77-79. [14]Sen G. Low density Fe-Mn-Al-C steels phase structures mechanisms and properties[J]. ISU International, 2021, 61(1): 16-25. [15]蔡梦茹, 段美琪, 洪志伟, 等. 氮含量对25Mn2CrVS贝氏体型非调质钢组织和性能的影响[J]. 金属热处理, 2020, 45(4): 34-39. Cai Mengru, Duan Meiqi, Hong Zhiwei, et al. Effect of nitrogen content on microstructure and properties of 25Mn2CrVS bainite type non-quenched and tempered steel[J]. Heat Treatment of Metals, 2020, 45(4): 34-39. [16]Zhi H C, Hua D, Zheng Y Y. Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1171-1137. [17]刘正东, 杨 钢, 程世长, 等. 2.25Cr-1Mo钢回火过程中碳化物析出顺序的研究[J]. 金属热处理, 2005, 30(4): 32-34. Liu Zhengdong, Yang Gang, Cheng Shichang, et al. Investigation of carbide precipitation order of 2.25Cr-1Mo steel during tempering[J]. Heat Treatment of Metals, 2005, 30(4): 32-34. [18]Sohn S S, Lee B J, Lee S. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel[J]. Acta Materialia, 2013, 61(13): 5050-5066. [19]Wang Y, Sun J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility[J]. Acta Materialia, 2018, 158(158): 247-256. [20]宋新莉, 彭宇凡, 李兆振, 等. 高强度无取向电工钢疲劳性能及断裂机制[J]. 电工钢, 2022, 4(1): 12-17. Song Xinli, Peng Yufan, Li Zhaozhen, et al. Fatigue properties and fracture mechanism of high strength non-oriented electrical steel[J]. Electrical Steel, 2022, 4(1): 12-17. [21]张 开, 王 学, 倪满生, 等. 高温时效对P91钢组织及硬度的影响[J]. 金属热处理, 2022, 47(12): 7-12. Zhang Kai, Wang Xue, Ni Mansheng, et al. Effect of high temperature aging on microstructure and hardness of P91 steel[J]. Heat Treatment of Metals, 2022, 47(12): 7-12. |