[1]倪继娜, 张 巍, 刘宁馨, 等. “十四五”重载铁路运输需求预测及发展对策探讨[J]. 铁道货运, 2022, 40(1): 7-11. Ni Jina, Zhang Wei, Liu Ningxin, et al. Discussion on railway transport demand forecast and development countermeasures during the 14th five-year plan period[J]. Railway Freight Transport, 2022, 40(1): 7-11. [2]任安超, 吉 玉, 周桂峰, 等. 铁路用钢轨及其制造技术[J]. 特殊钢, 2010, 31(5): 22-25. Ren Anchao, Ji Yu, Zhou Guifeng, et al. Rails for railway and its manufacturing technology[J]. Special Steel, 2010, 31(5): 22-25. [3]刘吉华, 王文健, 刘启跃. 4种车轮材料与U71Mn热轧钢轨匹配特性[J]. 西南交通大学学报, 2015, 50(6): 1130-1136. Liu Jihua, Wang Wenjian, Liu Qiyue. Matching characteristics between four kinds of wheel steels and U71Mn hot-rolled rail[J]. Journal of Southwest Jiaotong University, 2015, 50(6): 1130-1136. [4]郭立昌, 朱文涛, 何成刚, 等. 不同蠕滑率下U75V钢轨磨损与损伤性能分析[J]. 机械工程学报, 2018, 54(4): 167-175. Guo Lichang, Zhu Wentao, He Chenggang, et al. Analysis on wear and damage characteristics of U75V rail under different slip ratio conditions[J]. Journal of Mechanical Engineering, 2018, 54(4): 167-175. [5]李春红, 闵林峰, 沈明学, 等. 滑差对重载列车轮轨黏着特性与表层损伤的影响[J]. 华东交通大学学报, 2021, 38(1): 100-105. Li Chunhong, Min Linfeng, Shen Mingxue, et al. Study on the effect of slip rate on the adhesion characteristics and surface damage of heavy haul train wheel/rail materials[J]. Journal of East China Jiaotong University, 2021, 38(1): 100-105. [6]Fei Junjie, Zhou Guifeng, Zhou Jianhua, et al. Research on the effect of pearlite lamellar spacing on rolling contact wear behavior of U75V rail steel[J]. Metals (Basel), 2023, 13(2): 237. [7]计春娇, 岑耀东, 张 良, 等. 轧后不同冷却方式下U76CrRE重轨钢的摩擦磨损性能[J]. 金属热处理, 2023, 48(3): 203-208. Ji Chunjiao, Cen Yaodong, Zhang Liang, et al. Friction and wear performance of U76CrRE heavy rail steel under different post-rolling cooling modes[J]. Heat Treatment of Metals, 2023, 48(3): 203-208. [8]赵 鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(1): 1-35. Zhao Xin, Wen Zefeng, Wang Hengyu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. [9]陈煜达. 轮轨材料摩擦磨损过程中组织与性能演变研究[D]. 大连: 大连交通大学, 2020. [10]潘 睿, 任瑞铭, 陈春焕, 等. 钢中摩擦磨损白层的研究现状[J]. 钢铁研究学报, 2016, 28(7): 1-7. Pan Rui, Ren Ruiming, Chen Chunhuan, et al. Investigation of white layer resulting from friction and wear in steel[J]. Journal of Iron and Steel Research, 2016, 28(7): 1-7. [11]Manion S A, Stock T A C. Adiabatic shear bands in steel[J]. International Journal of Fracture Mechanics, 1970, 6(1): 106-107. [12]Yang Y Y, Fang H S, Huang W G. A study on wear resistance of the white layer[J]. Tribology International, 1996, 29(5): 425-428. [13]吴 凯, 丁厚福, 杜晓东, 等. 冲击磨料磨损中白层形成机制的有限元分析[J]. 钢铁研究学报, 2007(5): 99-102. Wu Kai, Ding Houfu, Du Xiaodong, et al. Finite element analysis of white layer formation mechanism during impact abrasive wear[J]. Journal of Iron and Steel Research, 2007(5): 99-102. [14]Lian Q L, Deng G Y, Zhu H T, et al. Influence of white etching layer on rolling contact behavior at wheel-rail interface[J]. Friction, 2020, 8(6): 1178-1196. [15]Liu J P, Zhou Q Y, Zhang Y H, et al. The formation of martensite during the propagation of fatigue cracks in pearlitic rail steel[J]. Materials Science and Engineering A, 2019, 747: 199-205. [16]Diao G J, Yan Q Z, Shi X J, et al. Improvement of wear resistance in ferrite-pearlite railway wheel steel via ferrite strengthening and cementite spheroidization[J]. Materials Research Express, 2019, 6(10): 106513. [17]宋 冉, 赵文倩, 包喜荣, 等. 稀土元素Ce及热处理对过共析轨钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(12): 162-167. Song Ran, Zhao Wenqian, Bao Xirong, et al. Effect of rare earth element Ce and heat treatment on microstructure and mechanical properties of hypereutectoid rail steel[J]. Heat Treatment of Metals, 2022, 47(12): 162-167. [18]Liu P C, Wang Z X, Cong J H, et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels[J]. Materials Letters, 2020, 279: 128520. [19]Li Y J, Choi P, Goto S, et al. Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing[J]. Ultramicroscopy, 2013, 132: 233-238. |