[1]余圣甫, 禹润缜, 何天英, 等. 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40(3): 198-209. Yu Shengfu, Yu Runzhen, He Tianying, et al. Wire arc additive manufacturing and its application: Research progress[J]. Materials China, 2021, 40(3): 198-209. [2]Markus Köhler, Fiebig Sierk, Hensel Jonas, et al. Wire and arc additive manufacturing of aluminum components[J]. Metals-Open Access Metallurgy Journal, 2019, 9(5): 608. [3]Ding D, Zhang S, Lu Q, et al. The well-distributed volumetric heat source model for numerical simulation of wire arc additive manufacturing process[J]. Materials Today Communications, 2021, 27(1): 102430. [4]李春凤, 肖 笑, 尹玉祥, 等. TIG电弧增材熔池行为的数值模拟研究现状[J]. 材料热处理学报, 2020, 41(7): 25-32. Li Chunfeng, Xiao Xiao, Yin Yuxiang, et al. Research status of numerical simulation of TIG arc additive molten pool behavior[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 25-32. [5]刘东帅, 吕彦明, 周文军, 等. 基于ANSYS的TIG电弧增材制造温度场数值模拟分析[J]. 激光与光电子学进展, 2019, 56(24): 181-187. Liu Dongshuai, Lü Yanming, Zhou Wenjun, et al. Numerical simulation of temperature field in TIG arc-additive manufacturing based on ANSYS[J]. Laser and Optoelectronics Progress, 2019, 56(24): 181-187. [6]潘 宇, 吕彦明, 赵 鹏, 等. 电弧增材单道多层应力场数值模拟与变形分析[J]. 机械科学与技术, 2023, 42(5): 765-771. Pan Yu, Lü Yanming, Zhao Peng, et al. Numerical simulation and deformation analysis of single-pass multi-layer stress field in arc additive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(5): 765-771. [7]白少昀, 吕彦明, 赵 鹏, 等. 不同工艺下GH4169镍基高温合金电弧增材制造热力场数值模拟[J]. 机械工程材料, 2022, 46(9): 89-95. Bai Shaoyun, Lü Yanming, Zhao Peng, et al. Numerical simulation of thermodynamic field of GH4169 nickel-based superalloy arc additive manufacturing under different processes[J]. Materials for Mechanical Engineering, 2022, 46(9): 89-95. [8]Feng G J, Wang H, Wang Y F, et al. Numerical simulation of residual stress and deformation in wire arc additive manufacturing[J]. Crystals, 2022, 12(6): 803. [9]周子黎. H13钢表面Co基合金等离子弧堆焊工艺及组织性能研究[D]. 长沙: 湖南大学, 2019. Zhou Zili. Study on plasma arc surfacing technology and microstructure performance of Co-based alloy coating on H13 steel surface[D]. Changsha: Hunan University, 2019. [10]张 驰. 双激光锻打复合增材H13模具钢组织及性能的研究[D]. 广州: 广东工业大学, 2021. Zhang Chi. Research on microstructure and properties of double laser forging compound additive H13 die steel[D]. Guangdong: Guangdong University of Technology, 2021. [11]张玉玲. 电弧增材制造温度场及应力场的数值模拟分析[D]. 大连: 大连理工大学, 2020. Zhang Yuling. Numerical simulation analysis of temperature field and stress field in arc additive manufacturing[D]. Dalian: Dalian University of Technology, 2020. [12]陈菊芳, 陈国炎, 孙凌燕, 等. H13钢表面激光熔覆层稀释率及强化效果研究[J]. 激光技术, 2017, 41(4): 596-601. Chen Jufang, Chen Guoyan, Sun Lingyan, et al. Investigation of dilution ratio and strengthening effect of laser cladded coating on H13 steel[J]. Laser Technology, 2017, 41(4): 596-601. |