[1]Liu W, Yang X, Wan Z, et al. Surface strengthening technology for mechanical parts[J]. Surface Review and Letters, 2021, 28(3): 1-16. [2]Lu K, Zhu J, Guo D, et al. Microstructures, corrosion resistance and wear resistance of high-entropy alloys coatings with various compositions prepared by laser cladding: A review[J]. Coatings, 2022, 12(7): 1023-1040. [3]于 静, 刘延川. 船用柴油机气缸再制造新方法——感应熔覆技术研究现状[J]. 热加工工艺, 2019, 48(6): 26-29, 40. Yu Jing, Liu Yanchuan. Innovative remanufacturing method of cylinder liner of marine disesel engine—Research status of induction cladding technology[J]. Hot Working Technology, 2019, 48(6): 26-29, 40. [4]李 琪. Invar36/Ni60复合涂层高频感应熔覆工艺研究[D]. 青岛: 中国石油大学(华东), 2019. [5]程国东. 高频感应熔覆制备耐蚀耐磨涂层研究[D]. 青岛: 中国石油大学(华东), 2009. [6]Nian S C, Tsai S W, Huang M S, et al. Key parameters and optimal design of a single-layered induction coil for external rapid mold surface heating[J]. International Communications in Heat and Mass Transfer, 2014, 57: 109-117. [7]岑 虎, 王云山, 雷剑波, 等. 锅炉管高频熔覆温度场的数值模拟[J]. 粉末冶金材料科学与工程, 2013(5): 639-646. Cen Hu, Wang Yunshan, Lei Jianbo, et al. Numerical simulation on temperature field of boiler tube coating fabricated by high frequency induction cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2013(5): 639-646. [8]Sun R, Shi Y, Pei Z, et al. Heat transfer and temperature distribution during high-frequency induction cladding of 45 steel plate[J]. Applied Thermal Engineering, 2018, 139: 1-10. [9]Yu J, Yu H. Coating properties, energy consumption, and cost analysis of the induction cladding process[J]. Results in Physics, 2020, 17: 103043. [10]Liu F, Lin C, Tao H, et al. The effect of heating time on the high-frequency induction cladding Ni45B alloy coating[J]. Surface Technology, 2013, 42: 14-16. [11]王超尘, 林 晨. 不同涂覆工艺对感应熔覆涂层性能的影响[J]. 机械研究与应用, 2015, 28(6): 73-75. Wang Chaochen, Lin Chen. Effects of different coating process for induction cladding coating performance[J]. Mechanical Research and Application, 2015, 28(6): 73-75. [12]刘敬巍, 于 凡, 王云山. 直接送粉在轴表面感应熔铸合金层的工艺研究[J]. 中国材料进展, 2009, 28(3): 54-57. Liu Jingwei, Yu Fan, Wang Yunshan. Study on the technology of induction melting and casting with direct feeding powder[J]. Materials China, 2009, 28(3): 54-57. [13]王云山, 胡 鹏, 雷剑波, 等. 基于同步送粉法的锅炉管高频感应熔覆组织性能[J]. 天津工业大学学报, 2015(1): 84-88. Wang Yunshan, Hu Peng, Lei Jianbo, et al. High frequency induction cladding microstructure and properties of the boiler pipe based on synchronous powder feeding method[J]. Journal of Tianjin Polytechnic University, 2015(1): 84-88. [14]于 静, 宋 博, 于洪飞, 等. 铸铁表面感应熔覆铁基涂层组织及耐磨性能[J]. 材料热处理学报, 2019, 40(12): 137-143. Yu Jing, Song Bo, Yu Hongfei, et al. Microstructure and wear resistance of Fe-based coating prepared by induction cladding on cast iron surface[J]. Transactions of Materials and Heat Treatment, 2019, 40(12): 137-143. [15]于 静, 刘延川, 于洪飞. 超音频感应熔覆钴基涂层的组织与摩擦磨损性能[J]. 材料保护, 2021, 54(9): 1-6. Yu Jing, Liu Yanchuan, Yu Hongfei. Microstructure and wear properties of the Co-based alloy coatings fabricated by ultrasonic induction cladding[J]. Materials Protection, 2021, 54(9): 1-6. [16]张 帅, 马玉山, 常占东, 等. 冷却速率对镍基自熔性合金耐蚀性能的影响[J]. 热加工工艺, 2019, 48(22): 105-109, 115. Zhang Shuai, Ma Yushan, Chang Zhandong, et al. Effect of cooling rate on corrosion resistance of Ni-based self-fluxing alloy[J]. Hot Working Technology, 2019, 48(22): 105-109, 115. [17]Ma H R, Li D R, Li J W. Effect of spraying power on microstructure, corrosion and wear resistance of Fe-based amorphous coatings[J]. Journal of Thermal Spray Technology, 2022, 31(5): 1683-1694. [18]Ding L, Hu S, Quan X, et al. Microstructure and high temperature tribological performance of Co-based laser cladded coatings reinforced with in-situ TiN-VC[J]. Vacuum, 2022, 198: 110894. [19]黄本生, 李天宁, 熊万能, 等. TiB2含量对Ni基感应熔覆涂层组织与性能的影响[J]. 表面技术, 2018, 47(6): 75-82. Huang Bensheng, Li Tianning, Xiong Wanneng, et al. Influence of TiB2 content on microstructure and properties of Ni-based induction cladding coating[J]. Surface Technology, 2018, 47(6): 75-82. [20]胡耀娟, 金 娟, 张 卉, 等. 石墨烯的制备、功能化及在化学中的应用[J]. 物理化学学报, 2010, 26(8): 2073-2086. Hu Yaojuan, Jin Juan, Zhang Hui, et al. Graphene: Synthesis, functionalization and application in chemistry[J]. Acta Physico-Chimica Sinica, 2010, 26(8): 2073-2086. [21]Liu H P, Yang H Z, Liu L L, et al. Microstructure and thermodynamic analysis of graphene-reinforced coating surface[J].Materials Science Forum, 2021, 1033: 56-60. [22]Farahmand P, Liu S, Zhang Z, et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 2014, 40(10): 15421-15438. [23]黄本生, 陈灵芝, 吴松松, 等. CeO2改性对感应熔覆自润滑复合涂层性能的影响[J]. 材料热处理学报, 2021, 42(12): 151-158. Huang Bensheng, Chen Lingzhi, Wu Songsong, et al. Effect of CeO2 modification on properties of induction cladding self-lubricating composite coatings[J]. Transactions of Materials and Heat Treatment, 2021, 42(12): 151-158. [24]Sun R, Li Q, Wang R H, et al. Microstructure and mechanical properties of high-frequency induction cladding Ni-based alloy coating with La2O3 addition[J]. Materials Science Forum, 2018, 934: 111-116. [25]王 珂. 纯铜表面脉冲激光-感应复合熔覆制备金属硅化物基涂层研究[D]. 武汉: 华中科技大学, 2017. [26]Lv J, Zhang C, Chen Z, et al. Fabrication and characterization of Ni60a alloy coating on copper pipe by plasma cladding with induction heating[J]. Coatings, 2021, 11(9): 1080-1096. [27]Zhou S, Lei J, Dai X, et al. A comparative study of the structure and wear resistance of NiCrBSi/50wt.%WC composite coatings by laser cladding and laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27. [28]Zhou S, Wu C, Zhang T, et al. Carbon nanotube and Fep-reinforced copper matrix composites by laser induction hybrid rapid cladding[J]. Scripta Materialia, 2014, 76: 25-28. [29]Meng L, Zhao W, Hou K, et al. A comparison of microstructure and mechanical properties of laser cladding and laser-induction hybrid cladding coatings on full-scale rail[J]. Materials Science and Engineering A, 2019, 748: 1-15. [30]Dai X Q, Zhou S F, Wang M F, et al. Effect of substrate types on the microstructure and properties of Cu65Fe35 composite coatings by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2017, 722: 173-182. [31]Zhou S F, Dai X Q, Wang C X, et al. Phase separated characteristics and soft magnetic properties of [Cu0. 6(FeCrC)0. 4]100-xSix immiscible composites by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2018, 732: 740-747. [32]Dai X, Zhou S, Wang M, et al. Microstructure evolution of phase separated Fe-Cu-Cr-C composite coatings by laser induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 324: 518-525. [33]Wang D Z, Hu Q W, Zeng X Y. Residual stress and cracking behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding[J]. Surface and Coatings Technology, 2015, 274: 51-59. [34]Zhou S, Dai X, Zeng X. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding[J]. Applied Surface Science, 2009, 255(20): 8494-8500. [35]Zhou S, Zeng X, Hu Q, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5): 1646-1653. [36]Zhou S, Huang Y, Zeng X, et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding[J]. Materials Science and Engineering A, 2008, 480(1/2): 564-572. [37]杨效田, 王智平, 路 阳, 等. 超音速等离子-感应复合技术制备高铝铜合金涂层特性[J]. 哈尔滨工程大学学报, 2012, 33(7): 906-910. Yang Xiaotian, Wang Zhiping, Lu Yang, et al. Characteristics of high-aluminium copper alloy coating made by supersonic plasma spraying and induction-refusion composite technology[J]. Journal of Harbin Engineering University, 2012, 33(7): 906-910. [38]路 阳, 马郡珠, 杨效田, 等. Ni60优化高铝青铜SAPS—感应重熔涂层组织结构的研究[J]. 功能材料, 2014, 45(7): 7108-7111, 7115. Lu Yang, Ma Junzhu, Yang Xiaotian, et al. Investigation of organization structure optimized by Ni60 on high-aluminum copper alloy coating prepared by supersonic plasma spraying-induction remelting[J]. Journal of Functional Materials, 2014, 45(7): 7108-7111, 7115. [39]Chen J, Dong Y, Wan L, et al. Effect of induction remelting on the microstructure and properties of in-situ TiN-reinforced NiCrBSi composite coatings[J]. Surface and Coatings Technology, 2018, 340: 159-166. [40]孟建兵, 徐文骥, 王续跃, 等. 横向交变磁场作用下的等离子体弧特性分析[J]. 焊接学报, 2010, 31(1): 75-79. Meng Jianbing, Xu Wenji, Wang Xuyue, et al. Performance of DC plasma arc in external transverse alternating magnetic field[J]. Transactions of the China Welding Institution, 2010, 31(1): 75-79. [41]杨效田, 王鹏春, 李 霞, 等. 复合制备Ni基合金涂层的组织结构及性能演变特征[J]. 稀有金属材料与工程, 2017, 46(3): 693-698. Yang Xiaotian, Wang Pengchun, Li Xia, et al. Evolution characteristics of microstructure of Ni-based alloy coatings and their properties under complex process[J]. Rare Metal Materials and Engineering, 2017, 46(3): 693-698. [42]王鹏春, 路 阳, 杨效田, 等. 强制冷却对感应重熔Ni60合金涂层组织结构的影响[J]. 中国有色金属学报, 2016, 26(2): 375-382. Wang Pengchun, Lu Yang, Yang Xiaotian, et al. Effect of forced cooling on microstructure of induction remelting Ni60 alloy coating[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 375-382. [43]杨效田, 付小月, 段军灵, 等. Ni60/铝青铜喷涂后定向凝固涂层的微观结构与耐磨性[J]. 表面技术, 2019, 48(1): 182-190. Yang Xiaotian, Fu Xiaoyue, Duan Junling, et al. Microstructure and friction properties of directional solidification coatings formed by Ni60/aluminium bronze after spraying[J]. Surface Technology, 2019, 48(1): 182-190. [44]朱红梅, 尹 泉, 彭如恕. 高频微锻造处理对304不锈钢表面激光熔覆层的影响[J]. 激光与光电子学进展, 2015, 52(12): 106-110. Zhu Hongmei, Yin Quan, Peng Rushu. Effects of high-frequency microforging on the laser cladding layer prepared on the 304 stainless steel substrate[J]. Laser and Optoelectronics Progress, 2015, 52(12): 106-110. [45]石润润. TC11钛合金连续点式锻压激光快速成形梯度性能材料组织和力学性能研究[D]. 秦皇岛: 燕山大学, 2019. [46]吕 超. 连续点式锻压激光快速成形修复TA15钛合金组织及性能[D]. 秦皇岛: 燕山大学, 2018. [47]Liu R, Xi M, Yu J, et al. Laser surface melting and consecutive point-mode forging hardening of DH36 marine steel: Mechanical and precipitation behavior[J]. Coatings, 2022, 12(4): 495-512. [48]Liu R, Xi M, Yu J, et al. Laser surface melting and consecutive point-mode forging of DH36 marine steel: Dynamic recrystallization and anisotropies[J]. Optics and Laser Technology, 2022, 153: 108276. [49]张金智, 张安峰, 王 宏, 等. 微锻造激光熔覆沉积高性能TC4组织与各向异性[J]. 中国激光, 2019, 46(4): 94-101. Zhang Jinzhi, Zhang Anfeng, Wang Hong, et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 2019, 46(4): 94-101. [50]Zhang H, Huang C, Wang G, et al. Comparison of energy consumption between hybrid deposition & micro-rolling and conventional approach for wrought parts[J]. Journal of Cleaner Production, 2021, 279: 123307. [51]Hu Y, Ao N, Wu S, et al. Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 253: 107868. [52]Fu Y, Zhang H, Wang G, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. Journal of Materials Processing Technology, 2017, 250: 220-227. [53]Li Q Q, Zhang Y, Chen J, et al. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition[J]. Journal of Materials Science and Technology, 2021, 70: 185-196. [54]Ye H, Ye K, Guo B, et al. Effects of combining ultrasonic micro-forging treatment with laser metal wire deposition on microstructural and mechanical properties in Ti-6Al-4V alloy[J]. Materials Characterization, 2020, 162: 110187. [55]Xu L Y, Gao Y L, Zhao L, et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy[J]. Journal of Materials Processing Technology, 2022, 299: 117324. [56]Chen W, Xu L, Zhao L, et al. Application of hybrid additive manufacturing technology for performance improvement of martensitic stainless steel[J]. Additive Manufacturing, 2022, 51: 102648. [57]Li M Y, Zhang Q, Han B, et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 2020, 125: 105848. [58]Ji F, Qin X, Hu Z, et al. Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105789. [59]Ning F, Cong W. Ultrasonic vibration-assisted (UV-A) manufacturing processes: State of the art and future perspectives[J]. Journal of Manufacturing Processes, 2020, 51: 174-190. [60]Cui Y, Xu C L, Han Q. Effect of ultrasonic vibration on unmixed zone formation[J]. Scripta Materialia, 2006, 55(11): 975-978. [61]Zhu L, Yang Z, Xin B, et al. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718[J]. Surface and Coatings Technology, 2021, 410: 126964. [62]Wu D, Guo M, Ma G, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209. [63]Sun R, Shi Y, Pei Z, et al. Heat transfer and temperature distribution during high-frequency induction cladding of 45 steel plate[J]. Applied Thermal Engineering, 2018, 139: 1-10. [64]李 琪, 石永军, 孙 瑞, 等. 感应熔覆Invar36/Ni60复合涂层的温度场模拟及试验验证[J]. 金属热处理, 2020, 45(1): 69-75. Li Qi, Shi Yongjun, Sun Rui, et al. Temperature field simulation and experimental verification of Invar36/Ni60 composite coating by induction cladding[J]. Heat Treatment of Metals, 2019, 45(1): 69-75. [65]Yu J, Zhang S, Liu Y, et al. Simulation and experiment investigation of electromagnetic and thermal field during induction cladding[J]. Materials Science and Technology, 2021, 37(12): 1060-1072. [66]Kotlan V, Hamar R, Panek D, et al. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process[J]. Open Physics, 2017, 15(1): 971-978. [67]Panek D, Kotlan V, Hamar R, et al. Novel algorithm for modeling combined laser and induction welding respecting keyhole effect[J]. Applied Mathematics and Computation, 2018, 319: 254-263. [68]Dalaee M T, Gloor L, Leinenbach C, et al. Experimental and numerical study of the influence of induction heating process on build rates induction heating-assisted laser direct metal deposition (IH-DMD)[J]. Surface and Coatings Technology, 2020, 384: 125275. [69]Yu J, Zhang S, Liu Y, et al. Numerical and experimental study of stepwise induction cladding[J]. Materials Research Express, 2021, 8(4): 046501. |