[1]Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application[J]. International Journal of plasticity, 2000, 16(10/11): 1391-1409. [2]黎 倩, 符仁钰, 史 文, 等. 汽车用TWIP钢的探索研究[J]. 金属热处理, 2008, 33(5): 1-4. Li Qian, Fu Renyu, Shi Wen, et al. Study of TWIP steel used for automobile[J]. Heat Treatment of Metals, 2008, 33(5): 1-4. [3]包卫平, 赵艳君, 许立伟, 等. 固溶处理对TWIP钢组织和力学性能的影响[J]. 金属热处理, 2010, 35(4): 33-37. Bao Weiping, Zhao Yanjun, Xu Liwei, et al. Effect of solution on microstructure and mechanical properties of TWIP steel[J]. Heat Treatment of Metals, 2010, 35(4): 33-37. [4]Santos D B, Saleh A A, Gazder A A, et al. Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-lNi-0.06C TWIP steel[J]. Materials Science and Engineering A, 2011, 528(10/11): 3545-3555. [5]Kang S, Jung Y S, Jun J H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel[J]. Materials Science and Engineering A, 2010, 527(3): 745-751. [6]Kalsar R, Suwas S. A novel way to enhance the strength of twinning induced plasticity (TWIP) steels[J]. Scripta Materialia, 2018, 154: 207-211. [7]李 磊, 朱旭军, 张 丽, 等. 喷丸直径对GH4169合金性能和损伤演化的影响[J]. 金属热处理, 2022, 47(9): 47-53. Li Lei, Zhu Xujun, Zhang Li, et al. Effect of shot peening diameter on properties and damage evolution of GH4169 alloy[J]. Heat Treatment of Metals, 2022, 47(9): 47-53. [8]Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins[J]. Nature Communications, 2014, 5(1): 3580. [9]王吉良, 朱定一, 轩建伟, 等. 先进高强度冷轧 TWIP 钢的组织和力学性能[J]. 金属热处理, 2015, 40(6): 21-25. Wang Jiling, Zhu Dingyi, Xuan Jianwei, et al. Mcrostructure and mechanical properties of advanced high strength cold-rolled TWIP steel[J]. Heat Treatment of Metals, 2015, 40(6): 21-25. [10]Kou H, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials[J]. Advanced Materials, 2014, 26(31): 5518-5524. [11]Wang H T, Tao N R, Lu K. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel[J]. Scripta Materialia, 2013, 68: 22-27. [12]Huang H W, Wang Z B, Lu J, Lu K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia, 2015, 87: 150-160. |