[1]杜 琼, 王志勇. 乌东德780 MPa高强钢蜗壳纵缝裂纹分析与处理[J]. 人民黄河, 2019, 41(S2): 283-284. Du Qiong, Wang Zhiyong. Analysis and treatment of longitudinal crack in 780 MPa high strength steel spiral case of Wudongde[J]. Yellow River, 2019, 41(S2): 283-284. [2]曾 丹, 郭明星, 王志勇, 等. 乌东德左岸 800 MPa级高强钢蜗壳安装质量控制[J]. 人民黄河, 2019, 41(S2): 280-282. Zeng Dan, Guo Mingxing, Wang Zhiyong, et al. Quality control of installation of 800 MPa high strength steel spiral shell on the left bank of Wudongde[J]. Yellow River, 2019, 41(S2): 280-282. [3]韩乐柱, 叶 铁. 国内水电用钢板的生产技术发展现状和展望[J]. 南阳师范学院学报, 2017, 16(12): 26-30. Han Lezhu, Ye Tie. The development status and prospect of the production technology of domestic hydropower steel plate[J]. Journal of Nanyang Normal University, 2017, 16(12): 26-30. [4]Bai Q, Ma Y, Kang X, et al. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels[J]. International Journal of Materials Research, 2017, 108(2): 99-107. [5]Liu Y, Yang L Q, Feng B, et al. Physical simulation on microstructure and properties for weld HAZ of X100 pipeline Steel[J]. Materials Science Forum, 2013, 762: 556-561. [6]Hu L, Wang Y, Li S, et al. Study on computational prediction about microstructure and hardness of Q345 steel welded joint based on SH-CCT diagram[J]. Acta Metallurgica Sinica, 2021, 57(8): 1073-1086. [7]杜宝帅, 张忠文, 胥国祥, 等. 不同冷却时间下Q690高强贝氏体钢焊接粗晶区的组织与性能[J]. 机械工程材料, 2012, 36(11): 84-87. Du Baoshuai, Zhang Zhongwen, Xu Guoxiang, et al. Microstructure and properties of welding coarse-grained region of Q690 high strength bainite steel at different cooling times[J]. Materials for Mechanical Engineering, 2012, 36(11): 84-87. [8]刘治文, 贾书君, 杨 浩, 等. 热输入对深海X70粗晶区组织和韧性的影响[J]. 河北科技大学学报, 2021, 42(5): 516-522. Liu Zhiwen, Jia Shujun, Yang Hao, et al. Effect of heat input on microstructure and toughness of CGHAZ of deep-sea X70[J]. Journal of Hebei University of Science and Technology, 2021, 42(5): 516-522. [9]于晨阳, 池 强, 张伟卫, 等. OD1422mm的X80级管线钢SH-CCT曲线测定与分析[J]. 金属热处理, 2020, 45(6): 93-97. Yu Chenyang, Chi Qiang, Zhang Weiwei, et al. Determination and analysis of SH-CCT curve of X80 pipeline steel with OD1422 mm[J]. Heat Treatment of Metals, 2020, 45(6): 93-97 [10]温长飞, 邓想涛, 王昭东, 等. 超高强钢Q1100的SH-CCT曲线及粗晶热影响区组织和性能[J]. 东北大学学报(自然科学版), 2017, 38(6): 809-813. Wen Changfei, Deng Xiangtao, Wang Zhaodong, et al. SH-CCT diagram, microstructure and properties of coarse grain heat-affected zone in Q1100 ultra-high strength steel[J]. Journal of Northeastern University(Natural Science), 2017, 38(6): 809-813. [11]肖红军, 刘 政, 崔 冰, 等. 1000 MPa高强钢焊接热影响区裂纹扩展行为的研究[J]. 连铸, 2019, 44(4): 41-46. Xiao Hongjun, Liu Zheng, Cui Bing, et al. Study on crack propagation behavior in heat-affected zone of 1000 MPa high strength steel welding[J]. Continuous Casting, 2019, 44(4): 41-46. [12]徐立善, 余 伟, 张烨铭, 等. 调质低碳贝氏体钢的组织和性能[J]. 北京科技大学学报, 2012, 34(2): 125-131. Xu Lishan, Yu Wei, Zhang Yeming, et al. Microstructure and mechanical properties of low carbon bainite steel treated by quenching and tempering[J]. Journal of University of Science and Technology Beijing, 2012, 34(2): 125-131. [13]朱雯婷, 崔君军, 陈振业, 等. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352. Zhu Wenting, Cui Junjun, Chen Zhenye, et al. Design and performance of 690 MPa grade low-carbon microalloyed construction structural steel with high strength and toughness[J]. Acta Metallurgica Sinica, 2021, 57(3): 340-352. [14]徐 彬, 马成勇, 李 莉, 等. 1200 MPa级HSLA钢的SH-CCT曲线及其热影响区组织与性能[J]. 材料科学与工艺, 2016, 24(3): 28-33. Xu Bin, Ma Chengyong, Li Li, et al. SH-CCT diagram, microstructures and properties of heat-affected zone of a 1200 MPa grade HSLA steel[J]. Materials Science and Technology, 2016, 24(3): 28-33. |