[1]陈 俊, 张覃轶, 邓锦强, 等. 马氏体不锈钢回火过程中碳化物的演变规律及其对耐蚀性的影响[J]. 金属热处理, 2023, 48(7): 38-43. Chen Jun, Zhang Qinyi, Deng Jinqiang, et al. Evolution law of carbides in tempering process of martensitic stainless steel and its influence on corrosion resistance[J]. Heat Treatment of Metals, 2023, 48(7): 38-43. [2]曹 鑫, 李 权, 杨银辉. V对含氮马氏体不锈钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(3): 236-241. Cao Xin, Li Quan, Yang Yinhui. Effect of V on microstructure and mechanical properties of nitrogen-containing martensitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(3): 236-241. [3]李慧东, 张覃轶, 刘 伟, 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响[J]. 金属热处理, 2022, 47(8): 152-157. Li Huidong, Zhang Qinyi, Liu Wei, et al. Effect of cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(8): 152-157. [4]纪显彬, 李照国, 魏海霞, 等. 淬火温度和氮含量对马氏体不锈钢组织和性能的影响[J]. 金属热处理, 2021, 46(3): 130-134. Ji Xianbin, Li Zhaoguo, Wei Haixia, et al. Effects of quenching temperature and nitrogen content on microstructure and properties of martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(3): 130-134. [5]谢官利, 迟宏宵, 李祖来, 等. 回火温度对N合金化耐蚀塑料模具钢组织与性能的影响[J]. 材料热处理学报, 2022, 43(3): 99-107. Xie Guanli, Chi Hongxiao, Li Zulai, et al. Effect of tempering temperature on microstructure and properties of N-alloyed corrosion resistant plastic die steel[J]. Transaotions of Materials and Heat Treatment, 2022, 43(3): 99-107. [6]袁 森, 吴晓春. 含氮耐蚀塑料模具钢的组织与性能[J]. 机械工程材料, 2011, 35(7): 61-64. Yuan Sen, Wu Xiaochun. Microstructure and properties of corrosion resistant plastic die steel containing nitrogen[J]. Materials for Mechanical Engineering, 2011, 35(7): 61-64. [7]李桂荣. 浅谈残余奥氏体对钢的性能影响[J]. 山西建筑, 2002, 28(5): 63. Li Guirong. Simple talk about the influence of residual austenite on steel[J]. Shanxi Architecture, 2002, 28(5): 63. [8]宋维锡. 金属学[M]. 北京: 冶金工业出版社, 1989. [9]徐海生, 韩迎春, 张 勇. 铬钼系冷镦钢布氏硬度与抗拉强度相关关系的研究[J]. 山西冶金, 2021, 44(6): 16-18, 22. Xu Haisheng, Han Yingchun, Zhang Yong. Study on the relationship between brinell hardness and tensile strength of Cr-Mo cold heading steel[J]. Shanxi Metallurgy, 2021, 44(6): 16-18, 22. [10]邹庆化. 铬钒钢强度和硬度间的相关关系[J]. 上海金属, 1997(5): 53-55. Zou Qinghua. The correlative relationship between strength and hardness of chrome-vanadium steel[J]. Shanghai Metals, 1997(5): 53-55. [11]苑凤忠. 碳钢抗拉强度与硬度的关系[J]. 枣庄师专学报, 1989(4): 39-41. Yuan Fengzhong. The relationship between tensile strength and hardness of carbon steel[J]. Journal of Zaozhuang College, 1989(4): 39-41. [12]王世凯, 王 睿, 康 燕, 等. 淬火温度对Cr5MoVNi钢组织和性能的影响[J]. 金属热处理, 2022, 47(9): 125-130. Wang Shikai, Wang Rui, Kang Yan, et al. Effect of quenching temperature on microstructure and properties of Cr5MoVNi steel [J]. Heat Treatment of Metals, 2022, 47(9): 125-130. [13]刘少尊, 车洪艳, 李 欧, 等. 淬火工艺对粉末冶金马氏体不锈钢组织与性能的影响[J]. 金属热处理, 2022, 47(6): 128-132. Liu Shaozun, Che Hongyan, Li Ou, et al. Effect of quenching process on microstructure and properties of powder metallurgy martensitic stainless steel [J]. Heat Treatment of Metals, 2022, 47(6): 128-132. [14]刘城城, 任 英, 张立峰. 淬火温度对不同铬含量的低碳马氏体不锈钢组织和性能的影响[J]. 钢铁研究学报, 2022, 34(11): 1256-1266. Liu Chengcheng, Ren Ying, Zhang Lifeng. Effect of quenching temperature on microstructure and properties of low carbon martensitic stainless steel with different chromium content [J]. Journal of Iron and Steel Research, 2022, 34(11): 1256-1266. [15]Stas'ko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel[J]. Materials Characterization, 2006, 56(4): 340-347. [16]程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述[J]. 材料导报, 2023, 37(7): 116-127. Cheng Xuan, Gui Xiaolu, Gao Guhui. Retained austenite in advanced high strength steels: A review[J]. Materials Reports, 2023, 37(7): 116-127. [17]胡光立, 谢希文. 钢的热处理: 原理和工艺[M]. 西安: 西北工业大学出版社, 2010. Hu Guangli, Xie Xiwen. Heat Treatment of Steel: Principle and Process[M]. Xi'an: Northwestern Polytechnical University Press, 2010. [18]董 瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582. Dong Han, Lian Xintong, Hu Chundong, et al. High performance steels: The scenario of theory and technology[J]. Acta Metallurgica Sinica, 2020, 56(4): 558-582. [19]Olsson C O A. The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS[J]. Corrosion Science, 1995, 37(3): 467-479. [20]Kwok C, Lo K, Cheng F T, et al. Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel[J]. Surface and Coatings Technology, 2003, 166(2/3): 221-230. [21]Speidel H J, Speidel M O. Nickel and chromium-based high nitrogen alloys[J]. Materials and Manufacturing Processes, 2004, 19(1): 95-109. |