[1]Locatelli G, Mancini M, Todeschini N. Generation IV nuclear reactors: Current status and future prospects[J]. Energy Policy, 2013, 61: 1503-1520. [2]Allen T R, Busby J T, Klueh R L, et al. Cladding and duct materials for advanced nuclear recycle reactors[J]. JOM, 2008, 60(1): 15-23. [3]Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. Metallurgical Reviews, 2005, 50(5): 287-310. [4]Porter D L, Miller B D, Hilton B A, et al. HT9 swelling in high burnup fast reactor fuel pin components[J]. Journal of Nuclear Materials, 2019, 519: 205-216. [5]Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials, 2007, 371(1-3): 37-52. [6]Aydogan E, Gigax J G, Parker S S, et al. Nitrogen effects on radiation response in 12Cr ferritic/martensitic alloys[J]. Scripta Materialia, 2020, 189: 145-150. [7]Vodarek V, Strang A. Effect of nickel on the precipitation processes in 12CrMoV steels during creep at 550 ℃[J]. Scripta Materialia, 1997, 38(1): 101-106. [8]刘桂良, 唐 睿, 陈 乐, 等. 烧结温度对ODS钢的显微结构及弥散相的影响[J]. 热加工工艺, 2019, 48(4): 71-73. Liu Guiliang, Tang Rui, Chen Le, et al. Effects of sintering temperature on microstructure and dispersed phase of ODS steel[J]. Hot Working Technology, 2019, 48(4): 71-73. [9]吴开霞, 查五生, 赵建成, 等. 添加纳米Y2O3的ODS-HT9钢的显微结构和性能[J]. 核动力工程, 2020, 41(2): 27-31. Wu Kaixia, Zha Wusheng, Zhao Jiancheng, et al. Effect of nano-Y2O3 on microstructure and properties of ODS-HT9 steel[J]. Nuclear Power Engineering, 2020, 41(2): 27-31. [10]Xu C, Hackett M. Terra P. HT9 mechanical and thermal creep properties[J]. Mechanical and Creep Behavior of Advanced Materials, 2017: 95-102. [11]Maiti R, Lucas G E, Odette G R, et al. Mechanical properties of HT-9 as a function of heat treatment[J]. Journal of Nuclear Materials, 1986, 141: 527-531. [12]Elliott C K, Lucas G E, Maiti R, et al. Microstructures of HT-9 as a function of heat treatment[J]. Journal of Nuclear Materials, 1986, 141: 439-443. [13]Ma T, Hao X, Liang T, et al. Influence of orthogonal heat treatments on mechanical properties of HT-9 ferritic/martensitic steel[C]//Chinese Materials Conference. Springer, Singapore, 2017: 85-94. [14]Hosemann P, Kabra S, Stergar E, et al. Micro-structural characterization of laboratory heats of the ferric/martensitic steels HT-9 and T91[J]. Journal of Nuclear Materials, 2010, 403(1-3): 7-14. [15]Liu J, Liu W, Hao Z, et al. Effects of silicon content and tempering temperature on the microstructural evolution and mechanical properties of HT-9 steels[J]. Materials, 2020, 13(4): 972. [16]ASTM A831M-2000. Standard specification for austenitic and martensitic stainless steel bars, billets, and forgings for liquid metal cooled reactor core components[S]. [17]束国刚. T/P91钢国产化工艺组织和性能改进的研究与应用[D]. 武汉: 武汉大学, 2004.[18]于在松, 刘江南, 王正品, 等. T91钢服役过程中碳化物的熟化分析[J]. 铸造技术, 2007, 28(5): 635-638. Yu Zaisong, Liu Jiangnan, Wang Zhengpin, et al. Analysis on ripening of carbide during service of T91 steel[J]. Foundry Technology, 2007, 28(5): 635-638. [19]孙 彪. T/P91钢马氏体强化机理研究[D]. 西安: 西安工业大学, 2015. [20]张 路, 王正品, 刘江南, 等. 回火对国产P91钢组织和性能的影响[J]. 铸造技术, 2003, 24(6): 537-539. Zhang Lu, Wang Zhengpin, Liu Jiangnan, et al. Effect of tempering process on the microstructure and mechanical property of domestic P91 steel[J]. Foundry Technology, 2003, 24(6): 537-539. [21]熊雪刚, 陈 述, 陈 述, 等. 回火工艺对Q125高强油井管用钢组织和性能的影响[J]. 金属热处理, 2023, 48(7): 138-143. Xiong Xuegang, Chen Shu, Chen Shu, et al. Effect of tempering process on microstructure and properties of Q125 high strength oil well pipe steel[J]. Heat Treatment of Metals, 2023, 48(7): 138-143. [22]匡成阳, 马煜林, 王辰昱, 等. 回火温度对耐热钢组织和性能的影响[J]. 金属热处理, 2022, 47(7): 129-133. Kuang Chengyang, Ma Yulin, Wang Chenyu, et al. Effect of tempering temperature on microstructure and properties of heat-resistant steel[J]. Heat Treatment of Metals, 2022, 47(7): 129-133. |