[1]何忠治. 电工钢的现状与展望[J]. 中国冶金, 2001, 11(4): 14-16. He Zhongzhi. Present situation and prospect for electrical steel[J]. China Metallurgy, 2001, 11(4): 14-16. [2]高 洁, 何承绪, 杨富尧, 等. 超薄取向硅钢研究进展及发展方向[J]. 金属热处理, 2019, 44(8): 59-63. Gao Jie, He Chengxu, Yang Fuyao, et al. Research progress and development direction of ultra-thin grain-oriented silicon steel[J]. Heat Treatment of Metals, 2019, 44(8): 59-63. [3]李志超, 唐 荻, 党 宁, 等. 2000年以来取向硅钢的研究进展[J]. 金属热处理, 2012, 37(3): 5-9. Li Zhichao, Tang Di, Dang Ning, et al. Research advance of the grain oriented silicon steel since 2000[J]. Heat Treatment of Metals, 2012, 37(3): 5-9. [4]程 灵, 杨富尧, 马 光, 等. 电力变压器用高磁感取向硅钢的发展及应用[J]. 材料导报, 2014, 28(11): 115-118. Cheng Ling, Yang Fuyao, Ma Guang, et al. Development and application of high magnetic induction grain-oriented silicon steel for power transformer[J]. Materials Review, 2014, 28(11): 115-118. [5]Wang Y, Xu Y B, Zhang Y X, et al. Effect of annealing after strip casting on texture development in grain oriented silicon steel produced by twin roll casting[J]. Materials Characterization, 2015, 107: 79-84. [6]Chang S K. Texture change from primary to secondary recrystallization by hot-band normalizing in grain-oriented silicon steels[J]. Materials Science and Engineering A, 2007, 452-453: 93-98. [7]Li H, Feng Y L, Song M, et al. Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 770-776. [8]Hu C, Song R, Wang Y, et al. Comprehensive influence of the normalized and final annealing process on high-strength nonoriented silicon steel[J]. Steel Research International, 2022, 93(7): 2100641. [9]卢晓禹, 董 磊, 黄 利, 等. 高磁感取向硅钢27QG090的常化退火工艺[J]. 金属热处理, 2023, 48(1): 186-189. Lu Xiaoyu, Dong Lei, Huang Li, et al.Normalizing annealing process of 27QG090 high magnetic induction oriented silicon steel[J]. Heat Treatment of Metals, 2023, 48(1): 186-189. [10]谯德高, 赵小龙, 狄彦军, 等. 退火工艺对平整轧制后50W800无取向硅钢磁性能的影响[J]. 金属热处理, 2022, 47(11): 117-121. Qiao Degao, Zhao Xiaolong, Di Yanjun, et al. Effect of annealing process on magnetic properties of flattening rolled 50W800 non-oriented silicon steel[J]. Heat Treatment of Metals, 2022, 47(11): 117-121. [11]Gutiérrez C E J, Hernández M M G, Salinas R A, et al. An EBSD investigation on the columnar grain growth in non-oriented electrical steels assisted by strain induced boundary migration[J]. Materials Letters, 2019, 252: 42-46. [12]Li Z H, Xie S K, Wang G D, et al. Dependence of recrystallization behavior and magnetic properties on grain size prior to cold rolling in high silicon non-oriented electrical steel[J]. Journal of Alloys and Compounds, 2021, 888: 161576. [13]Wang X, Luo L, Li W. Origin of fine equiaxed grains in industrial low-temperature grain-oriented silicon steel normalized sheet and their influence on magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2022, 552: 169210. [14]Fang F, Yang J, Zhang Y, et al. Microstructure and magnetic properties of ultra-thin grain-oriented silicon steel: Conventional process versus strip casting[J]. Journal of Magnetism and Magnetic Materials, 2021, 535: 168087. [15]Giorgio Bertotti. General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [16]Shiozaki M, Kurosaki Y. The effects of grain size on the magnetic properties of nonoriented electrical steel sheets[J]. Journal of Materials Engineering, 1989, 11(1): 37-43. [17]苏志贺, 金自力, 吴忠旺, 等. 罩式退火工艺的升温速率对无取向硅钢织构及性能的影响[J]. 金属热处理, 2022, 47(10): 124-128. Su Zhihe, Jin Zili, Wu Zhongwang, et al. Influence of heating rate of bell annealing process on texture and properties of non-oriented silicon steel[J]. Heat Treatment of Metals, 2022, 47(10): 124-128. |