[1]刘峰斌, 李景林, 金 杰, 等. 氮离子注入9Cr18Mo不锈钢的表面结构与力学性能[J]. 稀有金属材料与工程, 2013, 42(9): 1838-1843. Liu Fengbin, Li Jinglin, Jin Jie, et al. Surface structures and mechanical properties of 9Cr18Mo stainless steels implanted with nitrogen ions[J]. Rare Metal Materials and Engineering, 2013, 42(9): 1838-1843. [2]方梦莎, 张 津, 连 勇. 马氏体不锈钢不同渗氮方法对比试验[J]. 金属热处理, 2021, 46(10): 221-225. Fang Mengsha, Zhang Jin, Lian Yong. Comparative test on different nitriding methods for martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(10): 221-225. [3]Jacquet P, Coudert J B, Lourdin P. How different steel grades react to a salt bath nitrocarburizing and post-oxidation process: Influence of alloying elements[J]. Surface and Coatings Technology, 2011, 205(16): 4064-4067. [4]李广宇, 雷明凯. 等离子体源渗氮304L奥氏体不锈钢改性层的耐蚀性能[J]. 材料热处理学报, 2017, 38(1): 152-158. Li Guangyu, Lei Mingkai. Corrosion resistance of modified layer on 304L austenitic stainless steel prepared by plasma source nitriding[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 152-158. [5]唐 彩, 陈 波. 渗氮温度对40Cr钢QPQ组织与性能的影响[J]. 金属热处理, 2020, 45(3): 174-177. Tang Cai, Chen Bo. Effect of nitriding temperature on microstructure and properties of QPQ treated 40Cr alloy steel[J]. Heat Treatment of Metals, 2020, 45(3): 174-177. [6]刘 勇, 孙莉洁, 金 帆, 等. 高精度渗氮活门加工工艺研究[J]. 航空精密制造技术, 2022, 58(6): 42-45. Liu Yong, Sun Lijie, Jin Fan, et al. Research on processing technology of high precision nitriding valve[J]. Aviation Precision Manufacturing Technology, 2022, 58(6): 42-45. [7]胡凯祺. 稀土为何被称为“工业味精”?[J]. 仪器仪表用户, 2019, 26(9): 39 [8]蒋淑英, 许红明, 蔡 畅, 等. 激光熔覆-离子渗氮复合改性层的组织和耐磨耐蚀性研究[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 163-170. Jiang Shuying, Xu Hongming, Cai Chang, et al. Study on microstructures, wear resistance and corrosion resistance of laser cladding-ion nitriding composite modified layer[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(1): 163-170. [9]Peng T, Zhao X, Chen Y, et al. Improvement of stamping performance of H13 steel by compound-layer free plasma nitriding[J]. Surface Engineering, 2020, 36(5): 492-497. [10]Dong H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys[J]. International Materials Reviews, 2010, 55(2): 65-98. [11]牟鑫斌. 316L奥氏体不锈钢低温渗氮层和低温渗碳层的组织性能研究[D]. 兰州: 兰州理工大学, 2019. Mu Xinbin. Study on microstructure and properties of low temperature nitriding and low temperature carburizing layers of 316L austenitic stainless steel[D]. Lanzhou: Lanzhou University of Technology, 2019. [12]孙 璐, 曹 驰, 杜金涛, 等. AISI 300系列奥氏体不锈钢渗氮层组织和性能研究[J]. 表面技术, 2023, 52(1): 421-431. Sun Lu, Cao Chi, Du Jintao, et al. Organization and properties of nitriding layer for AISI 300 series austenitic stainless steel[J]. Surface Technology, 2023, 52(1): 421-431 [13]Liu D, You Y, Yan M, et al. Acceleration of plasma nitriding at 550 ℃ with rare earth on the surface of 38CrMoAl steel[J]. Coatings, 2021, 11(9): 11-22. [14]Li G J, Peng Q, Wang J, et al. Surface microstructure of 316L austenitic stainless steel by the salt bath nitrocarburizing and post-oxidation process known as QPQ[J]. Surface and Coatings Technology, 2008, 202(13): 2865-2870. [15]牛 毅, 贺占胥, 王明利, 等. 离子渗氮对304不锈钢组织和性能的影响[J]. 金属热处理, 2022, 47(8): 287-291. Niu Yi, He Zhanxu, Wang Mingli, et al. Effect of ion nitriding on microstructure and properties of 304 stainless steel[J]. Heat Treatment of Metals, 2022, 47(8): 287-291. [16]Zhang C S, Yan M F, Sun Z. Experimental and theoretical study on interaction between lanthanum and nitrogen during plasma rare earth nitriding[J]. Applied Surface Science, 2013, 287: 381-388. [17]谢 飞, 马宝钿, 何家文, 等. 钇对17CrMoV钢离子氮化特性的影响及催渗机理的探讨[J]. 稀土, 1996(3): 21-26. Xie Fei, Ma Baotian, He Jiawen, et al. The influence of yttrium on the plasma nitriding characteristics of 17CrMoV steel and its mechanism[J]. Rare Earths, 1996(3): 21-26. [18]Tang L N, Yan M F. Microstructure and corrosion resistance of quenched AISI 4140 steel plasma nitrided and nitrocarburised with and without rare earths[J]. Materials Science and Technology, 2013, 29(5): 610-615. [19]Yan M F, Liu R L. Martensitic stainless steel modified by plasma nitrocarburizing at conventional temperature with and without rare earths addition[J]. Surface and Coatings Technology, 2010, 205(2): 345-349. [20]韦乃安, 韦春贝, 代明江, 等. 稀土含量对Ti6Al4V钛合金等离子渗氮层组织和摩擦学性能的影响[J]. 表面技术, 2020, 49(3): 148-154. Wei Naian, Wei Chunbei, Dai Mingjiang, et al. Effect of rare earth content on the microstructure and friction properties of Ti6Al4V Alloy by plasma nitriding[J]. Surface Technology, 2020, 49(3): 148-154. |