[1]伏思宇, 杜 预, 黄志远, 等. 微观组织对GCr15轴承钢氢扩散行为的影响[J]. 金属热处理, 2022, 47(12): 175-180. Fu Siyu, Du Yu, Huang Zhiyuan, et al. Effect of microstructure on hydrogen diffusion behavior of GCr15 bearing steel[J]. Heat Treatment of Metals, 2022, 47(12): 175-180. [2]Takai K, Shoda H, Suzuki H, et al. Lattice defects dominating hydrogen-related failure of metals[J]. Acta Materialia, 2008, 56(18): 5158-5167. [3]王洪海, 陈俊德, 陈 冬, 等. 影响高强度低合金钢氢脆的因素[J]. 石油化工设备, 2018, 47(4): 39-48. Wang Honghai, Chen Junde, Chen Dong, et al. Influence factors on hydrogen embrittlement of high strength low alloy steels[J]. Petro-Chemical Equipment, 2018, 47(4): 39-48. [4]Yoo J, Jo M C, Jo M C, et al. Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb+Mo)-alloyed ultra-high-strength hot-stamping steels[J]. Materials Science and Engineering A, 2020, 791: 139763. [5]王 洪, 赵和明, 陈 辉, 等. 氢陷阱对临氢钢氢扩散系数测定的影响[J]. 材料热处理学报, 2016, 37(4): 236-242. Wang Hong, Zhao Heming, Chen Hui, et al. Effect of hydrogen traps on measurement of diffusion coefficient of hydrogen in steel for exposure to hydrogen environment[J]. Transactions of Materials and Heat Treatment, 2016, 37(4): 236-242. [6]刘清华, 唐慧文, 斯庭智. 氢陷阱对钢氢脆敏感性的影响[J]. 材料保护, 2018, 51(11): 127-132, 143. Liu Qinghua, Tang Huiwen, Si Tingzhi. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Materials Protection, 2018, 51(11): 127-132, 143. [7]陈 林. 微结构设计下钢中氢陷阱抗氢脆能力的研究[D]. 北京: 北京科技大学, 2022. [8]Zhang S, Liu S, Wan J, et al. Effect of Nb-Ti multi-microalloying on the hydrogen trapping efficiency and hydrogen embrittlement susceptibility of hot-stamped boron steel[J]. Materials Science & Engineering A, 2020, 772: 138788. [9]Wang L, Cheng X Y, Peng H, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel[J]. Materials Letters, 2021, 302: 130327. [10]马星星, 陈业新, 张华伟. Nb对氢在Fe-13Cr-6Al-2Mo合金中扩散行为的作用[J]. 上海大学学报(自然科学版), 2022, 28(1): 111-120. Ma Xingxing, Chen Yexin, Zhang Huawei. Effects of Nb on hydrogen diffusion in Fe-13Cr-6Al-2Mo alloys[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(1): 111-120. [11]Singh P P, Ghosh S, Mula S. Strengthening behavior and failure analysis of hot-rolled Nb+V microalloyed steel processed at various coiling temperatures[J]. Materials Science and Engineering A, 2022, 859: 144210. [12]Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel[J]. Acta Materialia, 2018, 153: 193-204. [13]赵伟言, 陈伟健, 赵征志, 等. 1500和2000 MPa级热成形钢氢致延迟开裂行为研究[J]. 钢铁研究学报, 2022, 34(8): 815-824. Zhao Weiyan, Chen Weijian, Zhao Zhengzhi, et al. Study on hydrogen induced delayed fracture of 1500 and 2000 MPa hot-stamping steels[J]. Journal of Iron and Steel Research, 2022, 34(8): 815-824. [14]张海霞, 程晓英, 李 恒, 等. 回火温度对新型系泊链钢的组织与氢扩散行为的影响[J]. 材料热处理学报, 2015, 36(10): 141-147. Zhang Haixia, Cheng Xiaoying, Li Heng, et al. Effect of tempering temperature on microstructure and hydrogen diffusion behavior in new mooring chain steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 141-147. [15]Cheng X Y, Wang L, Li X L. Effect of tempering temperature and hydrogen on deformation during tensile tests in a V-added high strength low alloy steel[J]. Materials Science and Engineering A, 2022, 840: 142920. [16]Aparna P, Guzmán A A, Vincent S, et al. Ab initio study of the combined effects of alloying elements and H on grain boundary cohesion in ferritic steels[J]. Metals, 2019, 9(3): 9030291. [17]Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design, 2008, 29(10): 1934-1948. [18]李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493. Li Yizhuang, Huang Mingxin. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction[J]. Acta Metallurgica Sinica, 2020, 56(4): 487-493. [19]郑东升, 刘 丹, 罗 登, 等. 回火温度对超高强钢微观组织及力学性能的影响[J]. 材料热处理学报, 2020, 41(12): 90-96. Zheng Dongsheng, Liu Dan, Luo Deng, et al. Effect of tempering temperature on microstructure and mechanical properties of ultra-high strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 90-96. [20]蔡贞祥, 程晓英, 彭 浩, 等. 回火温度对含Nb低合金高强度钢氢行为的影响[J]. 金属热处理, 2023, 48(4): 45-52. Cai Zhenxiang, Cheng Xiaoying, Peng Hao, et al. Effect of tempering temperature on hydrogen behavior of Nb-containing HSLA steel[J]. Heat Treatment of Metals, 2023, 48(4): 45-52. [21]Chen Y S, Lu H, Liang J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367: 171-175. [22]王 贞, 刘 静, 黄 峰, 等. 回火温度对DP600钢氢扩散及氢脆敏感性的影响[J]. 金属热处理, 2021, 46(2): 87-94. Wang Zhen, Liu Jing, Huang Feng, et al. Effect of tempering temperature on hydrogen diffusion and hydrogen embrittlement susceptibility of DP600 steel[J]. Heat Treatment of Metals, 2021, 46(2): 87-94. [23]Cheng X Y, Zhang H X, Li H. Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel[J]. Materials Science and Engineering, 2015, 636: 164-171. [24]牛 旭, 刘 越, 王 灼, 等. 钒含量对秸秆膨化机螺杆用Cr20高铬铸铁组织与性能的影响[J]. 金属热处理, 2023, 48(8): 8-15. Niu Xu, Liu Yue, Wang Zhuo, et al. Effect of vanadium content on microstructure and properties of Cr20 high chromium cast iron for straw puffing machine screw[J]. Heat Treatment of Metals, 2023, 48(8): 8-15. [25]Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels[J]. ISIJ International, 2016, 56(1): 24-36. |