[1]张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35(2): 141-151. Zhang Zhongwu. Research development of high strength low alloy (HSLA) steels[J]. Materials China, 2016, 35(2): 141-151. [2]Chen Y, Zhang D, Liu Y, et al. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Materials Characterization, 2013, 84: 232-239. [3]Vervynckt S, Verbeken K, Lopez B, et al. Modern HSLA steels and role of non-recrystallisation temperature[J]. International Materials Reviews, 2012, 57(4): 187-220. [4]侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31(12): 1326-1331. Hou Baorong, Zhang Dun, Wang Peng. Marine corrosion and protection: Current status and prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331. [5]杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发[J]. 钢铁, 2012, 47(12): 1-8. Yang Caifu, Su Hang. Research and development of high performance shipbuilding and marine engineering steel[J]. Iron and Steel, 2012, 47(12): 1-8. [6]Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides[J]. Metallurgical and Materials Transactions A, 2016, 47(8): 1-13. [7]刘宏宇, 张喜庆, 滕莹雪, 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685. Liu Hongyu, Zhang Xiqing, Teng Yingxue, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(5): 679-685. [8]Nan L, Liu Y, Lue M, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy[J]. Journal of Materials Science Materials in Medicine, 2008, 19(9): 3057-3070. [9]Zhang T, Liu W, Dong B, et al. Corrosion of Cu-doped Ni-Mo low-alloy steel in a severe marine environment[J]. The Journal of Physics and Chemistry of Solids, 2022, 163: 110584. [10]张正延, 柴 锋, 罗小兵, 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791. Zhang Zhengyan, Chai Feng, Luo Xiaobing, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel[J]. Acta Metallurgica Sinica, 2019, 55(6): 783-791. [11]Luo X B, Yang C F, Su H, et al. Effect of aging temperature on microstructure and properties of HSLA ship-hull steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(6): 73-77. [12]罗小兵, 杨才福, 柴 锋, 等. 两相区二次淬火对高强度船体钢低温韧性的影响[J]. 金属热处理, 2012, 37(9): 71-74. Luo Xiaobing, Yang Caifu, Chai Feng, et al. Effect of intercritical quenching on low temperature toughness of high strength ship hull steel[J]. Heat Treatment of Metals, 2012, 37(9): 71-74. [13]Avazkonandeh-Gharavol M H, Haddad-Sabzevar M, Haerian A. Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal deposits[J]. Materials and Design, 2009, 30(6): 1902-1912. [14]Morris Z. On coherent transformations in steel[J]. Acta Materialia, 2004(52): 5511-5518. [15]Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures[J]. Metal Science Journal, 2000, 16(1): 26-40. [16]彭梦都, 时 捷, 崔 冰, 等. 高氮奥氏体钢的冲击断口形貌研究[J]. 塑性工程学报, 2018, 25(2): 240-245. Peng Mengdu, Shi Jie, Cui Bing, et al. Research on impact fracture morphology of high nitrogen austenitic steel[J]. Journal of Plasticity Engineering, 2018, 25(2): 240-245. [17]支 萌. X80大变形管线钢组织调控与性能的研究[D]. 秦皇岛: 燕山大学, 2015. Zhi Meng. Research on controlling microstructures and mechanical properties of X80 pipeline steel excellent deformability[D]. Qinhuangdao: Yanshan University, 2015. [18]Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel[J]. Materials Science and Engineering A, 2018, 729(27): 423-432. [19]王 伟. 反应堆压力容器模拟钢中富Cu相的析出及晶体结构演化研究[D]. 上海: 上海大学, 2011. Wang wei. Precipitation and structural evolution of copper-rich nano phases in reactor pressure vessel model steels[D]. Shanghai: Shanghai University, 2011. [20]杜瑜宾, 胡小锋, 张守清, 等. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354. Du Yubin, Hu Xiaofeng, Zhang Shouqing, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu[J]. Acta Metallurgica Sinica, 2020, 56(10): 1343-1354. [21]周永忻, 黄清珠, 陈乾惕, 等. 铜对低碳镇静钢冷轧薄板再结晶织构的影响[J]. 金属学报, 1978(3): 292-297, 338. Zhou Yongxin, Huang Qingzhu, Chen Qianti, et al. Effect of copper on recrystallization texture of cold rolled sheet of low carbon killed steel[J]. Acta Metallurgica Sinica, 1978(3): 292-297, 338. [22]Li W, Gu J, Deng Y, et al. New comprehension on the microstructure, texture and deformation behaviors of UNS S32101 duplex stainless steel fabricated by direct cold rolling process[J]. Materials Science and Engineering A, 2022, 845: 143150. |