[1]Xu Bin, Yin Haiqing, Zhang Cong, et al. Data-driven design of Ni-based turbine disc superalloys to improve yield strength[J]. Journal of Materials Science and Technology, 2023, 155: 175-191. [2]程体娟, 于鸿垚, 毕中南, 等. 固溶处理对新型镍钴基高温合金显微组织及力学性能的影响[J]. 金属热处理, 2023, 48(4): 97-103. Cheng Tijuan, Yu Hongyao, Bi Zhongnan, et al. Effect of solution treatment on microstructure and mechanical properties of a novel nickel-cobalt-based superalloy[J]. Heat Treatment of Metals, 2023, 48(4): 97-103. [3]Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys[J]. Acta Materialia, 2008, 56(6): 1288-1297. [4]Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-374. [5]Duan Jixuan, An Teng, Gu Yu, et al. Effect of γ′ phase and microtwins on the microstructural evolution and mechanical properties of a novel Ni-Co base superalloy[J]. Materials Science and Engineering A, 2023, 865: 144323. [6]Yang Jialin, Li Xing, Yao Hanbo, et al. Interfacial features of stainless steel/titanium alloy multi-metal fabricated by laser additive manufacturing[J]. Acta Metallurgica Sinica, 2022, 35(8): 1357-1364. [7]Xu Bin, Yin Haiqing, Zhang Cong, et al. Design of Ni-based turbine disc superalloys with improved yield strength using machine learning[J]. Journal of Materials Science, 2022, 57: 10379-10394. [8]Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477. [9]李 颖, 彭 霜, 张 婷, 等. 选区激光熔化制备Ti-6Al-4V合金的热处理工艺及力学性能[J]. 金属热处理, 2022, 47(9): 175-181. Li Ying, Peng Shuang, Zhang Ting, et al. Heat treatment process and mechanical properties of selective laser melted Ti-6Al-4V alloy[J]. Heat Treatment of Metals, 2022, 47(9): 175-181. [10]Huang S H, Liu Peng, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67: 1191-1203. [11]魏水淼, 马 盼, 张志宇, 等. 选区激光熔化制备AlCoCrFeNi高熵合金的成形性能[J]. 金属热处理, 2022, 47(12): 28-35. Wei Shuimiao, Ma Pan, Zhang Zhiyu, et al. Processability of AlCoCrFeNi high entropy alloy fabricated by selective laser melting[J]. Heat Treatment of Metals, 2022, 47(12): 28-35. [12]杨智凯, 张欣悦, 易 林, 等. 固溶处理对选区激光熔化双相不锈钢组织及性能的影响[J]. 金属热处理, 2023, 48(5): 174-183. Yang Zhikai, Zhang Xinyue, Yi Lin, et al. Effect of solution treatment on microstructure and properties of selective laser melted duplex stainless steel[J]. Heat Treatment of Metals, 2023, 48(5): 174-183. [13]Li Jinghao, Zhou Xianglin, Brochu Mathieu, et al. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review[J]. Additive Manufacturing, 2020, 31: 100989. [14]林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688. Lin Xin, Huang Weidong. Performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 2015, 34(9): 684-688. [15]Koerner C. Additive manufacturing of metallic components by selective electron beam melting-A review[J]. International Materials Reviews, 2016, 61(5): 361-377. [16]Kou S. Solidification and liquation cracking issues in welding[J]. JOM, 2003, 55(6): 37-42. [17]卢楠楠, 郭以沫, 杨树林, 等. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252. Lu Nannan, Guo Yimo, Yang Shulin, et al. Formation mechanisms of hot cracks in laser additive repairing single crystal superalloys[J]. Acta Metallurgica Sinica, 2023, 59(9): 1243-1252. [18]Moussaoui K, Rubio W, Mousseigne M, et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties[J]. Materials Science and Engineering A, 2018, 735: 182-190. [19]Ghoussoub J N, Tang Y T, Dick C, et al. On the Influence of alloy composition on the additive manufacturability of Ni-based superalloys[J]. Metallurgical and Materials Transactions A, 2022, 53(3): 962-983. [20]Zhang Yaocheng, Yang Li, Chen Tingyi, et al. Sensitivity of liquation cracking to deposition parameters and residual stresses in laser deposited IN718 alloy[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5519-5529. [21]Xu Jinghao. Kontis P, Peng Rulin, et al. Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion[J]. Acta Materialia, 2022, 240: 118307. [22]Bikash K, Shreehard S, Dheepa S, et al. Influence of heat input on solidification cracking in additively manufactured CM247LC Ni-based superalloy[J]. Metallurgical and Materials Transactions A, 2023, 54(6): 2394-2409. [23]Collins M G, Lippold J C. An investigation of ductility dip cracking in nickel-based filler materials[J]. Welding Journal, 2003, 82(10): 288-295. [24]Xu Mingfang, Chen Yuhua, Zhang Timing, et al. Effect of post-heat treatment on microstructure and mechanical properties of nickel-based superalloy fabricated by ultrasonic-assisted wire arc additive manufacturing[J]. Materials Science and Engineering A, 2023, 863: 144548. [25]Basak A, Das S. Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE)[J]. Journal of Alloys and Compounds, 2017, 705: 806-816. [26]Shahwaz M, Nath P, Sen I. A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys[J]. Journal of Alloys and Compounds, 2022, 907: 164530. [27]Choi J P, Shin G H, Yang Sangsun, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting[J]. Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2017, 310: 60-66. [28]Cloots M, Peter J U, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials and Design, 2016, 89: 770-784. [29]Yu Qun, Wang Cunshan, Yang Guang, et al. Influence of Cr/Mo ratio on microstructure and mechanical properties of the Ni-based superalloys fabricated by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 894: 162484. [30]Guo Chuan, Li Gan, Li Sheng, et al. Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition[J]. Nano Materials Science, 2023, 5(1): 53-77. [31]Wang N, Mokadem S, Rappaz M, et al, Solidification cracking of superalloy single-and bi-crystals[J]. Acta Materialia, 2004, 52(11): 3173-3182. [32]Ojo O A, Richards N L, Chaturvedi M C. Microstructural study of weld fusion zone of TIG welded IN738LC nickel-based superalloy[J]. Scripta Materialia, 2004, 51(7): 683-688. [33]Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436. |