[1]魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538. Wei Shizhong, Xu Liujie. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica, 2020, 56(4): 523-538. [2]牛海云, 潘泳良, 金头男, 等. 含钴高钒高速钢回火组织演变和耐磨性[J]. 材料热处理学报, 2023, 44(8): 123-132. Niu Haiyun, Pan Yongliang, Jin Tounan, et al. Tempered microstructure evolution and wear resistance of cobalt-containing high vanadium high speed steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(8): 123-132. [3]Ju J, Fu H G, Fu D M, et al. Effects of Cr and V additions on the microstructure and properties of high-vanadium wear-resistant alloy steel[J]. Ironmaking and Steelmaking, 2018, 45(2): 176-186. [4]Xu Liujie, Wang Fangfang, Zhou Yucheng, et al. Fabrication and wear property of in-situ micro-nano dual-scale vanadium carbide ceramics strengthened wear-resistant composite layers[J]. Ceramics International, 2020, 47(1): 953-964. [5]Chen Pinghu, Liu Zhilin, Li Ruiqing, et al. The effect of manganese additions on the high temperature oxidation behaviour of the high-vanadium cast iron[J]Journal of Alloys and Compounds, 2018, 767: 181-187. [6]Wan Shanhong, Li Huan, Tieu Kiet, et al. Mechanical and tribological assessments of high-vanadium high-speed steel by the conventional powder metallurgy process[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(1/4): 943-955. [7]种晓宇, 汪广驰, 蒋业华, 等. 耐磨钢铁材料中强化相设计与性质计算研究进展[J]. 中国材料进展, 2019, 38(12): 1145-1158. Chong Xiaoyu, Wang Guangchi, Jiang Yehua, et al. Research progress in design and property calculation of strengthening phases in wear-resistant steels materials[J]. Materials China, 2019, 38(12): 1145-1158. [8]李 欢. 高钒钢的制备及热处理工艺研究[D]. 成都: 西南石油大学, 2018, 21-35. [9]Cao H T, Dong X P, Pan Z, et al. Surface alloying of high-vanadium high-speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties[J]. Materials and Design, 2016, 100: 223-234. [10]王 西. 高钒高耐磨合金铸渗层制备及耐磨性能研究[D]. 荆州: 长江大学, 2018, 40-49. Wang Xi. Study on the preparation and wear-resisting properties of high-vanadium-resistant alloy castings[D]. Jingzhou: Yangtze University, 2018, 40-49. [11]Kawalec Magdalena, Fras Edward. Structure, mechanical properties and wear resistance of high-vanadium cast iron[J]. ISIJ International, 2008, 48(4): 518-524. [12]Fu H G, Zhao H J, Du Z Z, et al. Heat treatment of centrifugally cast high carbon high vanadium high speed steel mill roll[J]. Ironmaking and Steelmaking, 2011, 38(5): 338-345. [13]Wang Fangfang, Xu Liujie, Wei Shizhong, et al. Preparation and wear properties of high-vanadium alloy composite layer[J]. Friction, 2021, 10(8): 1166-1179. [14]Leng Wanqing, Xu Liujie, Jiang Tao, et al. Carbide and matrix microstructure evolution of high-vanadium wear-resistance cast iron with high-silicon content during austempering[J]. International Journal of Metalcasting, 2022, 17(3): 1859-1870. [15]张志勇, 石如星, 殷立涛, 等. 贝氏体基高硅高钒高速钢等温淬火制备及组织特点[J]. 金属热处理, 2023, 48(8): 87-93. Zhang Zhiyong, Shi Ruxing, Yin Litao, et al. Isothermal preparation and microstructure characteristics of bainitic high silicon high vanadium high speed steel[J]. Heat Treatment of Metals, 2023, 48(8): 87-93. [16]薛 屺, 易 诚, 周 毅, 等. 淬火温度对高钒高速钢摩擦磨损性能的影响[J]. 金属热处理, 2017, 42(11): 156-160. Xue Qi, Yi Cheng, Zhou Yi, et al. Effect of quenching temperature on friction and wear properties of high vanadium high speed steel[J]. Heat Treatment of Metals, 2017, 42(11): 156-160. [17]Zhao Zhengrong, Cao Yulong, Wan Xiangliang, et al. Effect of cooling rate on carbide characteristics of the high vanadium high-speed steel[J]. ISIJ International, 2022, 62(3): 524-531. [18]徐流杰, 李 洲, 魏世忠. 高钒高速钢回火过程中碳化钒析出与残留奥氏体转变[J]. 金属热处理, 2016, 41(5): 6-11. Xu Liujie, Li Zhou, Wei Shizhong. VC precipitation and retained austenite transformation of high-vanadium high-speed steel during tempering[J]. Heat Treatment of Metals, 2016, 41(5): 6-11. [19]Ni X L, Li Z, Yuan H, et al. As deposited microstructure of spray formed 10V high speed steel[J]. Materials Research Innovations, 2015, 18: 295-300. [20]Li Haizhi, Tong Weiping, Cui Junjun, et al. Heat Treatment of centrifugally cast high-vanadium alloy steel for high-pressure grinding roller[J]. Acta Metallurgica Sinica, 2014, 27(3): 430-435. [21]Long X Y, Kang J, Lv B, et al. Carbide-free bainite in medium carbon steel[J]. Materials and Design, 2014, 64: 237-245. [22]Chen Jianzhi, Zhang Bin, Zeng Lingrong, et al. Optimal bainite contents for maximizing fatigue cracking resistance of bainite/martensite dual-phase EA4T steels[J]. Steel Research International, 2018, 89(7): 1700562. [23]Xiao Lairong, Li Shan, Xu Jiawei, et al. Failure mechanism and improvement process of preparing carbide coating on high speed steel by thermal diffusion reaction[J]. Surface and Coatings Technology, 2020, 404: 126398. [24]周明星, 余可多, 周书翊, 等. 应力对中碳超细晶贝氏体钢显微组织的影响[J]. 材料热处理学报, 2023-11-22. Zhou Mingxing, Yu Keduo, Zhou Shuyi, et al. Effect of stress on microstructure of a medium-carbon ultrafine grain bainitic steel[J]. Transactions of Materials and Heat Treatment, 2023-11-22. [25]孙晓文, 林诗慧, 王天生. 高碳高硅纳米贝氏体钢回火后的组织与力学性能[J]. 材料热处理学报, 2021, 42(6): 98-106. Sun Xiaowen, Lin Shihui, Wang Tiansheng. Microstructure and mechanical properties of tempered high-C-Si nano-bainite steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(6): 98-106. [26]郑 花, 胡 锋, 柯 睿, 等. 硅对中碳低温贝氏体钢组织与性能的影响[J]. 金属热处理, 2020, 45(9): 203-209. Zheng Hua, Hu Feng, Ke Rui, et al. Effect of Si on microstructure and mechanical properties of low temperature bainitic steel with medium carbon[J]. Heat Treatment of Metals, 2020, 45(9): 203-209.[27]Zhao J, Guo K, He Y M, et al. Extremely high strength achievement in medium-C nanobainite steel[J]. Scripta Materialia, 2018, 152: 20-23. [28]Wang Y H, Zhang F C, Wang T S. A novel bainitic steel comparable to maraging steel in mechanical properties[J]. Scripta Materialia, 2013, 68(9): 763-766. [29]Huang Chengcong, Zou Minqiang, Qi Liang, et al. Effect of isothermal and pre-transformation temperatures on microstructure and properties of ultrafine bainitic steels[J]. Journal of Materials Research and Technology, 2021, 12: 1080-1090. [30]Eres-Castellanos Adriana, Hidalgo Javier, Zorgani Muftah, et al. Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach[J]. Materials and Design, 2021, 197: 109217. [31]Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon[J]. Materials Science and Engineering A, 2012, 549: 185-192. [32]王云龙, 余 伟, 张 昳, 等. 奥氏体化温度对贝氏体钢等温转变及力学性能的影响[J]. 金属热处理, 2022, 47(4): 80-85. Wang Yunlong, Yu Wei, Zhang Yi, et al. Effect of austenitizing temperature on isothermal transformation and mechanical properties of bainite steel[J]. Heat Treatment of Metals, 2022, 47(4): 80-85. [33]Fu Lihua, Zhou Meng, Wang Yanlin, et al. The microstructure transformations and wear properties of nanostructured bainite steel with different Si content[J]. Materials, 2022, 15(18): 6252. [34]Efremenko V G, Hesse O, Friedrich T, et al. Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite[J]. Wear, 2019, 418: 24-35. |