[1]Colombo M, Gariboldi E, Morri A. Er addition to Al-Si-Mg-based casting alloy: Effects on microstructure room and high temperature mechanical properties[J]. Journal of Alloys and Compounds, 2017, 708: 1234-1244. [2]Huang C Q, Liu J X. Effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs[J]. Metallurgical and Materials Transactions A, 2020, 51(1): 289-298. [3]Asghar G, Peng L M, Fu P H, et al. Role of Mg2Si precipitates size in determining the ductility of A357 cast alloy[J]. Materials and Design, 2020, 186: 108280. [4]Yang B, Song H, Wang S. Tension-compression mechanical behavior and corresponding microstructure evolution of cast A356-T6 aluminum alloy[J]. Materials Science and Engineering A, 2021, 821: 141613. [5]Ding J, Miao S N, Ma B J, et al. Effect of solution treatment on microstructure and mechanical properties of A356.2 aluminum alloy treated with Al-Sr-La master alloy[J]. Advanced Engineering Materials, 2018, 20(6): 1701173. [6]Cai Q, Mendis C L, Chang T H I, et al. Effect of short T6 heat treatment on the microstructure and the mechanical properties of newly developed die-cast Al-Si-Mg-Mn alloys[J]. Materials Science and Engineering A, 2020, 788: 139610. [7]Cheng J F, Li G R, Wang H M, et al. Influence of high pulsed magnetic field on the dislocations and mechanical properties of Al2O3/Al composites[J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1083-1092. [8]Li G R, Qin T, Fei A G, et al. Performance and microstructure of TC4 titanium alloy subjected to deep cryogenic treatment and magnetic field[J]. Journal of Alloys and Compounds, 2019, 802: 50-69. [9]Pan D, Wang Y T, Guo Q T, et al. Grain refinement of Al-Mg-Si alloy without any mechanical deformation and matrix phase transformation via cyclic electro-pulsing treatment[J]. Materials Science and Engineering A, 2021, 807: 140916. [10]Luo J, Luo H Y, Zhao T S, et al. Effect of magnetic field on dislocation morphology and precipitation behaviour in ultrafine-grained 7075 aluminium alloy[J]. Journal of Materials Science and Technology, 2021, 93: 128-146. [11]Xiang Z, Zhang L, Xin Y. Ultrafine microstructure and hardness in Fe-Cr-Co alloy induced by spinodal decomposition under magnetic field[J]. Materials and Design, 2021, 199: 109383. [12]Liu Y Z, Zhan L H, Ma Q Q, et al. Effects of alternating magnetic field aged on microstructure and mechanical properties of AA2219 aluminum alloy[J]. Journal of Alloys and Compounds, 2015, 647: 644-647. [13]Babutskyi A, Chrysanthou A, Zhao C L. Effect of pulsed magnetic field pre-treatment of AISI 52100 steel on the coefficient of sliding friction and wear in pin-on-disk tests[J]. Friction, 2014, 2(4): 310-316. [14]Cao Y H, He L Z, Cao X Z, et al. The relationship of dislocation and vacancy cluster with yield strength in magnetic annealed UFG 1050 aluminum alloy[J]. Materials Science and Engineering A, 2017, 679: 417-427. [15]Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806. [16]Zhang X, Huang L K, Zhang B, et al. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment[J]. Materials Science and Engineering A, 2019, 753: 168-178. [17]Gottstein G, Shvindlerman L S, Zhao B. Thermodynamics and kinetics of grain boundary triple junctions in metals: Recent developments[J]. Scripta Materialia, 2010, 62(12): 914-917. [18]Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration[J]. Journal of Materials Science and Technology, 2018, 34(8): 1359-1363. [19]Kang K J, Li D Y, Wang A, et al. Experimental investigation on aging treatment of 7050 alloy assisted by electric pulse[J]. Results in Physics, 2020, 16: 103016. [20]Li Q S, Song C J, Li H B, et al. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Materials Science and Engineering A, 2007, 466(1): 101-105. [21]Gao M C, Bennett T A, Rollett A D, et al. The effects of applied magnetic fields on the α/γ phase boundary in the Fe-Si system[J]. Journal of Physics D: Applied Physics, 2006, 39(14): 2890-2896. [22]Watanabe T, Tsurekawa S, Zhao X, et al. A new challenge: Grain boundary engineering for advanced materials by magnetic field application[J]. Journal of Materials Science, 2006, 41(23): 7747-7759. [23]Wu X Y, Zhang H R, Ma Z, et al. Interactions between Fe-rich intermetallics and Mg-Si phase in Al-7Si-xMg alloys[J]. Journal of Alloys and Compounds, 2019, 786: 205-214. [24]池长青, 王之珊, 赵丕智. 铁磁流体力学[M]. 北京: 北京航空航天大学出版社, 1993. [25]励志峰. 强磁场下AZ91合金固态相变行为研究[D]. 上海: 上海交通大学, 2008. Li Zhifeng. Solid state phase transformation of AZ91 under strong magnetic field[D]. Shanghai: Shanghai Jiao Tong University, 2008. [26]Youdelis W V, Colton D R, Cahoon J. On the theory of diffusion in a magnetic field[J]. Canadian Journal of Physics, 1964, 42(11): 2217-2237. [27]Youdelis W V, Cahoon J R. Diffusion in a magnetic field[J]. Canadian Journal of Physics, 1970, 48(6): 805-808. [28]白庆伟, 麻永林, 邢淑清, 等. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148, 20160. Bai Qingwei, Ma Yonglin, Xing Shuqing, et al. Precipitation and strengthening mechanism of Al-Zn-Mg-Cu alloy under controllable electromagnetic energy (CEME) aging treatment[J]. Materials Reports, 2021, 35(20): 20143-20148, 20160. |