[1]OkulovI V, Volegov A S, Attar H, et al. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65: 866-871. [2]梁广冰, 朱锦洪, 尹丹青, 等. TC4 钛合金激光熔覆路径选择数值模拟研究[J]. 河南科技大学学报(自然科学版), 2021, 42(6): 12-18. Liang Guangbing, Zhu Jinhong, Yin Danqing, et al. Numerical simulation of laser cladding path selection for TC4 titanium alloy[J]Journal of Henan University of Science and Technology (Natural Science), 2021, 42(6): 12-18. [3]Guo C, Zhou J S, Chen J M, et al. Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature[J]. Surface and Coatings Technology, 2010, 205(7): 2142-2151. [4]龚玉玲, 武美萍, 缪小进, 等. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 159-163. Gong Yuling, Wu Meiping, Miao Xiaojin, et al. Effect of scanning speed on corrosion resistance of CeO2/Ni60A coating prepared by laser cladding[J]. Materials Reports, 2022, 36(18): 159-163. [5]Yong Y W, Fu W, Deng Q L, et al. A comparative study of vision detection and numerical simulation for laser cladding of nickel-based alloy[J]. Journal of Manufacturing Processes, 2017, 28: 364-372. [6]龚玉玲, 武美萍, 崔 宸, 等. 搭接率对TC4表面Ni60A熔覆层组织性能的影响[J]. 金属热处理, 2021, 46(9): 229-233. Gong Yuling, Wu Meiping, Cui Chen, et al. Effect of overlap rate on microstructure and properties of Ni60A clad coating onTC4 titanium alloy[J]. Heat Treatment of Metals, 2021, 46(9): 229-233. [7]Sun G F, Zhang Y K, Liu C S, et al. Microstructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr-Cr3C2[J]. Materials and Design, 2010, 31(6): 2737-2744. [8]张蕾涛, 张红星, 刘德鑫, 等. 激光熔覆复合涂层裂纹产生原因及控制研究进展[J]. 金属热处理, 2020, 45(8): 233-239. Zhang Leitao, Zhang Hongxing, Liu Dexin, et al. Research progress on the causes and control of cracks in laser cladding composite coatings[J]. Heat Treatment of Metals, 2020, 45(8): 233-239. [9]张冬云, 吴 瑞, 张晖峰, 等. 激光金属熔覆成形过程中温度场演化的三维数值模拟[J]. 中国激光, 2015, 42(5): 112-123. Zhang Dongyun, Wu Rui, Zhang Huifeng, et al. Numerical simulation of temperature field evolution in the process of laser metal deposition[J]. Chinese Journal of Lasers, 2015, 42(5): 112-123. [10]Javid Y, Ghoreishi M. Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(1/4): 69-79. [11]Wang C Y, Zhou J Z, Zhang T, et al. Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J]. Optics and Laser Technology, 2022, 149: 107843. [12]Tamanna N, Crouch R, Naher S. Progress in numerical simulation of the laser cladding process[J]. Optics and Lasers in Engineering, 2019, 122: 151-163. [13]赵明娟, 李宝星, 吴 涛, 等. 基于热-流耦合模型研究激光熔覆速度场影响机制[J]. 华东交通大学学报, 2022, 39(4): 74-83. Zhao Mingjuan, Li Baoxing, Wu Tao, et al. Study on the effect mechanism of laser cladding velocity field based on thermal-fluid coupling model[J]. Journal of East China Jiaotong University, 2022, 39(4): 74-83. [14]Li C, Yu Z B, Gao J X, et al. Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding[J]. Surface and Coatings Technology, 2019, 357: 965-977. [15]王世清, 史冰园, 金 峰. TC4 钛合金激光熔覆高熵合金的温度场数值模拟[J]. 热加工工艺, 2023, 52(8): 121-124. Wang Shiqing, Shi Bingyuan, Jin Feng, et al. Numerical simulation on temperature field of high-entropy alloy by laser cladding on TC4 titanium alloy[J]. Hot Working Technology, 2023, 52(8): 121-124. [16]Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709-722. [17]Chen L Y, Zhao Y, Song B X, et al. Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding[J]. Optics and Laser Technology, 2021, 139: 107009. [18]Chen L Y, Yu T B, Xu P F, et al. In-situ NbC reinforced Fe-based coating by laser cladding: Simulation and experiment[J]. Surface and Coatings Technology, 2021, 412: 127027. [19]Song J, Chew Y X, Bi G J, et al. Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis[J]. Materials and Design, 2018, 137: 286-297. [20]Zinovieva O, Zinoviev A, Romanova V, et al. Three-dimensional analysis of grain structure and texture of additively manufactured 316L austenitic stainless steel[J]. Additive Manufacturing, 2020, 36: 101521. |