[1]郭 俊. 轮轨滚动接触疲劳损伤机理研究[D]. 成都: 西南交通大学, 2006. Guo Jun. Study on mechanism of wheel-rail rolling contact fatigue and damage[D]. Chengdu: Southwest Jiaotong University, 2006. [2]张银花, 周清跃, 鲍 磊, 等. 国内外高速铁路钢轨性能对比研究[J]. 中国铁道科学, 2015, 36(4): 20-26. Zhang Yinhua, Zhou Qingyue, Bao Lei, et al.Comparative study on rail performance of high-speed railway at home and abroad[J]. China Railway Science, 2015, 36(4): 20-26. [3]任安超. 高强度耐蚀钢轨的研究[D]. 武汉: 武汉科技大学, 2012. Ren Anchao. A research on high strength corrosion resistant rail[D]. Wuhan: Wuhan University of Science and Technology, 2012. [4]Kang C, Schneider S, Wenner M, et al. Experimental investigation on the fatigue behaviour of rails in the transverse direction[J]. Construction and Building Materials, 2021, 272: 121666. [5]王东梅, 赵磊城, 陈 林, 等. 淬火冷速对过共析轨钢中珠光体组织的影响[J]. 金属热处理, 2021, 46(3): 12-17. Wang Dongmei, Zhao Leicheng, Chen Lin, et al. Effect of quenching cooling rate on pearlite microstructure of hypereutectoid rail steel[J]. Heat Treatment of Metals, 2021, 46(3): 12-17. [6]姚 冬. 不同强度等级珠光体钢轨韧性指标对比分析[J]. 铁道建筑, 2018, 58(7): 1-4. Yao Dong. Comparative analysis of toughness indexes of pearlite rail with different strength grades[J]. Railway Engineering, 2018, 58(7): 1-4. [7]陈 林, 王慧军, 郭飞翔. 淬火微观组织对重轨钢疲劳裂纹扩展速率的影响[J]. 材料导报, 2017, 31(14): 109-112. Chen Lin, Wang Huijun, Guo Feixiang. Effect of quenching microstructure on fatigue crack growth rate of heavy rail steel[J]. Materials Reports, 2017, 31(14): 109-112. [8]崔健伟. 过共析钢轨力学性能及疲劳裂纹扩展行为研究[D]. 包头: 内蒙古科技大学, 2020. Cui Jianwei. A study on mechanical properties and fatigue crack propagation behavior of hypereutectoid steel rail[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. [9]王明明. 高强度钢轨钢成分设计及组织、性能研究[D]. 秦皇岛: 燕山大学, 2018. Wang Mingming. A study on composition design, structure and properties of high strength rail steel[D]. Qinhuangdao:Yanshan University, 2018. [10]周庆飞. 75 kg/m重载用钢轨淬火工艺及疲劳裂纹扩展行为研究[D]. 包头: 内蒙古科技大学, 2019. Zhou Qingfei. A study on quenching process and fatigue crack propagation behavior of 75 kg/m heavy duty rail[D]. Baotou: Inner Mongolia University of Science and Technology, 2019. [11]拉乌金. 铬钢热处理[M]. 北京: 科学出版社, 1959. [12]张 旭, 何文超, 魏鑫鸿. 深冷处理对H13钢组织和热疲劳性能的影响[J]. 金属热处理, 2021, 46(10): 81-85. Zhang Xu, He Wenchao, Wei Xinhong. Effect of cryogenic treatment on microstructure and thermal fatigue properties of H13 steel[J]. Heat Treatment of Metals, 2021, 46(10): 81-85. [13]王业双. U76CrRE热处理钢轨组织及疲劳断裂行为研究[D]. 包头: 内蒙古科技大学, 2022. Wang Yeshuang. A research on structure and fatigue fracture behavior of U76CrRE heat-treated rail[D]. Baotou: Inner Mongolia University of Science and Technology, 2022. [14]孙淑华. 显微组织对珠光体钢疲劳裂纹扩展速率的影响[J]. 物理测试, 2004, 2(3): 7-10. Sun Shuhua. Effect of microstructure on fatigue crack propagation rate of pearlite steel[J]. Physical Test, 2004, 2(3): 7-10. [15]Królicka A, Lesiuk G, Radwański K, et al. Comparison of fatigue crack growth rate: pearlitic rail versus bainitic rail[J]. International Journal of Fatigue, 2021, 149: 106280. [16]Bai Jinbo, Chen Siyi. Secondary cracking during surface crack growth under tensile fatigue loading[J]. Engineering Fracture Mechanics, 1988, 30(2): 161-167. [17]Cen Yaodong, Chen Lin, Dong Rui. et al. Effect of quenching rate on fatigue crack growth of hypereutectoid rail steel[J]. Journal of Materials Science, 2020, 55(30): 15033-15042. |