[1]Luo J F, Fang Y Y, Xu G J, et al. Development of ferromagnetic sputtering targets with high performance[J]. Materials Science Forum, 2020, 993: 820-825. [2]杨长胜, 程海峰, 唐耿平, 等. 磁控溅射铁磁性靶材的研究进展[J]. 真空科学与技术学报, 2005, 25(5): 372-377. Yang Changsheng, Cheng Haifeng, Tang Gengping, et al. Review of ferromagnetic targets for magnetron sputtering[J]. Chinese Journal of Vacuum Science and Technology, 2005, 25(5): 372-377. [3]罗俊锋, 顾晓倩, 徐国进, 等. Co90Zr7Ta3三元合金微观组织及磁性能的研究[J]. 稀有金属材料与工程, 2021, 50(3): 1016-1019. Luo Junfeng, Gu Xiaoqian, Xu Guojin, et al. Microstructure and magnetic properties of Co90Zr7Ta3 ternary alloy[J]. Rare Metal Materials and Engineering, 2021, 50(3): 1016-1019. [4]ASTM International. Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets: ASTM F1761-00[S]. [5]北京有色金属研究总院, 有研亿金新材料有限公司. 圆形铁磁性靶材多圆周PTF检测装置: CN201600443U[P]. 2010-10-06. [6]韩彦鹏, 陈志永, 李 震, 等. 高纯钴板冷轧前后的显微组织及织构特征[J]. 兵器材料科学与工程, 2020, 43(2): 52-57. Han Yanpeng, Chen Zhiyong, Li Zhen, et al. Microstructure and texture characteristics of high purity cobalt plate before and after cold rolling[J]. Ordnance Material Science and Engineering, 2020, 43(2): 52-57. [7]李 震, 宋克睿, 韩彦鹏, 等. 热轧过程中高纯钴微观组织及织构演变[J]. 材料科学与工艺, 2020, 28(4): 8-15. Li Zhen, Song Kerui, Han Yanpeng, et al. Microstructure and texture evolution of high purity cobalt during hot rolling[J]. Materials Science and Technology, 2020, 28(4): 8-15. [8]Sun Q, Zhang X Y, Yin R S, et al. Structural characterization of {1013} twin boundaries in deformed cobalt[J]. Scripta Materialia, 2015, 108: 109-112. [9]Tolédano P, Krexner G, Prem M, et al. Theory of the martensitic transformation in cobalt[J]. Physical Review B, 2001, 64(14): 144104. [10]Nishiyama Z. Martensitic Transformation[M]. Oxford: Elsevier, 2012. [11]Zhu Y T, Zhang X Y, Liu Q. Observation of twins in poly-crystalline cobalt containing face-center-cubic and hexagonal-close-packed phases[J]. Materials Science and Engineering A, 2011, 528(28): 8145-8149. [12]涂 坚, 孟 醒, 周志明, 等. 保温时间、冷却速率以及预变形对钴金属γ→ε相变行为的影响[J]. 中国有色金属学报, 2018, 28(1): 97-106. Tu Jian, Meng Xing, Zhou Zhiming, et al. Effects of holding time, cooling rate and predeformation on microstructural characteristics of cobalt undergoing γ→ε transformation[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(1): 97-106. [13]Tu Jian, Zhou Kunfeng, Zhou Zhiming, et al. Effects of ausforming procedure and following annealing treatment on microstructural characteristics in cobalt[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 415-422. [14]李 祎, 张祥凯, 何克坚, 等. 层错能对铜合金室温变形及热处理过程中晶粒细化的影响[J]. 中国有色金属学报, 2016, 26(1): 66-76. Li Yi, Zhang Xiangkai, He Kejian, et al. Effect of stack fault energy on grain refinement of Cu alloy during room temperature deformation and subsequent annealing[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(1): 66-76. [15]Materialia S. Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys[J]. Scripta Materialia, 2013 68(2): 95-99. |