[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]斯松华, 周方颖, 王建国. 冷轧及热处理对Al0.3CoCrFeNi高熵合金组织及性能的影响[J]. 金属热处理, 2020, 45(3): 103-108. Si Songhua, Zhou Fangying, Wang Jianguo. Effect of cold rolling and heat treatment on microstructure and properties of Al0.3CoCrFeNi high entropy alloy[J]. Heat Treatment of Metals, 2020, 45(3): 103-108. [3]姜 越, 谭亚平, 朱柏祥, 等. 退火处理对CoCrFeNiB0.05Ti0.6高熵合金组织与力学性能的影响[J]. 金属热处理, 2023, 48(2): 158-163. Jiang Yue, Tan Yaping, Zhu Baixiang, et al. Effect of annealing treatment on microstructure and mechanical properties of CoCrFeNiB0.05Ti0.6 high entropy alloy[J]. Heat Treatment of Metals, 2023, 48(2): 158-163. [4]翟逸玥, 寇生中, 杨慧妮. AlxCrFeNiMn高熵合金的组织和性能[J]. 金属热处理, 2019, 44(7): 144-149. Zhai Yiyue, Kou Shengzhong, Yang Huini. Microstructure and properties of AlxCrFeNiMn high entropy alloy[J]. Heat Treatment of Metals, 2019, 44(7): 144-149. [5]李荣斌, 宗在康, 张志玺, 等. 硅对铸态CoCrFeMnNi高熵合金组织及性能的影响[J]. 金属热处理, 2024, 49(2): 45-52. Li Rongbin, Zong Zaikang, Zhang Zhixi, et al. Effect of silicon on microstructure and properties of as-cast CoCrFeMnNi high entropy alloy[J]. Heat Treatment of Metals, 2024, 49(2): 45-52. [6]He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196. [7]Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties[J]. Journal of Materials Science & Technology, 2021, 74: 136-142. [8]郭宝昌, 姜凤阳, 王俊勃, 等. 退火工艺对FeCrMnNiAl0.1高熵合金显微组织及力学性能的影响[J]. 金属热处理, 2023, 48(5): 246-252. Guo Baochang, Jiang Fengyang, Wang Junbo, et al. Effect of annealing process on microstructure and mechanical properties of FeCrMnNiAl0.1 high-entropy alloy[J]. Heat Treatment of Metals, 2023, 48(5): 246-252. [9]Zhang W, Ma Z, Zhao H, et al. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing[J]. Materials Science and Engineering A, 2021, 800: 140264. [10]Lin J, Yuan B, Li C, et al. Strength-ductility synergy of Al0.3CoCrFeNiCu high-entropy alloy via cold rolling and subsequent annealing[J]. Materials Letters, 2022, 314: 131879. [11]Gao X, Liu T, Qin G, et al. Nano-twinning induced high strain hardening behavior in a metastable as-cast Co30Cr30Fe20Ni20 high entropy alloy at room temperature[J]. Materials Characterization, 2022, 194: 112420. [12]贾智轩, 褚延朋, 冯运莉, 等. 高熵合金制备及热处理工艺研究进展[J]. 金属热处理, 2020, 45(10): 17-23. Jia Zhixuan, Chu Yanpeng, Feng Yunli, et al. Research progress in preparation and heat treatment of high entropy alloys[J]. Heat Treatment of Metals, 2020, 45(10): 17-23. [13]Xiao Y, Peng X, Fu T. L21-strengthened body-centered-cubic high-entropy alloy with excellent mechanical properties[J]. Intermetallics, 2022, 145: 107539. [14]Yen S, Liu Y, Chu S, et al. B2-strengthened Al-Co-Cr-Fe-Ni high entropy alloy with high ductility[J]. Materials Letters, 2022, 325: 132828. [15]梅金娜, 姜凤阳, 娜 卫, 等. 轧制变形对高熵合金微观组织和力学性能的影响[J]. 金属热处理, 2022, 47(3): 67-72. Mei Jinna, Jiang Fengyang, Na Wei, et al. Effect of rolling deformation on microstructure and mechanical properties of high-entropy alloy[J]. Heat Treatment of Metals, 2022, 47(3): 67-72. [16]张明旭, 旺 徐, 李涌泉, 等. 冷轧+退火对CoCrNi中熵合金显微组织和力学性能的影响[J]. 金属热处理, 2023, 48(4): 85-88. Zhang Mingxu, Wang Xu, Li Yongquan, et al. Effect of cold-rolling and annealing on microstructure and mechanical properties of CoCrNi medium-entropy alloy[J]. Heat Treatment of Metals, 2023, 48(4): 85-88. [17]刘 聪, 彭文屹, 江长双, 等. 退火处理对AlCoCuFeNi0.2高熵合金组织与性能的影响[J]. 金属热处理, 2019, 44(6): 108-112. Liu Cong, Peng Wenyi, Jiang Changshuang, et al. Effect of annealing treatment on microstructure and properties of AlCoCuFeNi0.2high-entropy alloy[J]. Heat Treatment of Metals, 2019, 44(6): 108-112. [18]刘 亮, 张 越, 赵作福, 等. 热处理对CoCrFeNiMo高熵合金组织与硬度的影响[J]. 金属热处理, 2016, 41(8): 29-32. Liu Liang, Zhang Yue, Zhao Zuofu, et al. Effect of heat treatment on microstructure and hardness of CoCrFeNiMo high entropy alloy[J]. Heat Treatment of Metals, 2016, 41(8): 29-32. [19]Chang H, Zhang T W, Ma S G, et al. Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off[J]. Materials & Design, 2021, 197: 109202. [20]Zhang M, Ma Y, Dong W, et al. Phase evolution, microstructure, and mechanical behaviors of the CrFeNiAlxTiy medium-entropy alloys[J]. Materials Science and Engineering A, 2020, 771: 138566. [21]Zou Y, Li S, Liu S, et al. Improved mechanical and corrosion properties of CrMnFeCoNi high entropy alloy with cold rolling and post deformation annealing process[J]. Journal of Alloys and Compounds, 2021, 887: 161416. [22]Humphreys J, Rohrer G, Rollett A. Mobility and migration of boundaries[J]. Recrystallization and Related Annealing Phenomena, 2017, 5: 145-197. [23]Gwalani B, Gorsse S, Soni V, et al. Role of copper on L12 precipitation strengthened fcc based high entropy alloy[J]. Materialia, 2019, 6: 100282. [24]Gwalani B, Dasari S, Sharma A, et al. High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength-ductility combination in a high entropy alloy[J]. Acta Materialia, 2021, 219: 117234. [25]Mishra A, Kad B, Gregori F, et al. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis[J]. Acta Materialia, 2007, 55: 13-28. [26]Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7: 393-398. [27]Li Z, Fu L, Peng J, et al. Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening[J]. Materials Characterization, 2020, 159: 109989. [28]Hou J, Zhang M, Ma S, et al. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling[J]. Materials Science and Engineering A, 2017, 707: 593-601. |