[1]Zhu Mingyu. Design and analysis of steam turbine blades[J]. Journal of Physics: Conference Series, 2019, 1300: 012056. [2]陈忠华. 汽轮机叶片耐水蚀激光淬火研究[D]. 哈尔滨: 哈尔滨工程大学, 2010. [3]Shepeleva L, Medres B, Kaplan W D, et al. Laser induced Cu/alumina bonding: Microstructure and bond mechanism[J]. Surface and Coatings Technology, 2000, 125(1): 40-44. [4]刘志江, 刘向民, 李连相. 近年我国大型汽轮机末级长叶片的冲蚀损伤[J]. 动力工程, 2003, 23(1): 2201-2204. Liu Zhijiang, Liu Xiangmin, Li Lianxiang. Erosion damage on the last stage blades of large capacity steam turbine in China recently[J]. Power Engineering, 2003, 23(1): 2201-2204. [5]Bendeich P, Alam N, Brandt M, et al. Residual stress measurements in laser clad repaired low pressure turbine blades for the power industry[J]. Materials Science and Engineering A, 2006, 437: 70-71. [6]Hamed A A, Tabakoff W, Rivir R B, et al. Turbine blade surface deterioration by erosion[J]. Journal of Turbomachinery, 2005, 127(3): 445-452. [7]任 超. 17-4PH不锈钢表面激光熔覆Stellite6涂层组织及性能研究[D]. 上海: 上海交通大学, 2017. [8]Li Jianing, Chen Chuanzhong, Lin Zhaoqing, et al. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy[J]. Journal of Alloys and Compounds, 2011, 509(14): 4882. [9]刘玉宾, 王存山, 高亚丽, 等. 镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J]. 中国激光, 2006, 33(5): 709-713. Liu Yubin, Wang Cunshan, Gao Yali, et al. Laser cladding amorphous composite coating of Cu-Zr-Al on magnesium alloy surface[J]. Chinese Journal of Lasers, 2006, 33(5): 709-713. [10]钟敏霖, 刘文今. Stellite6+WC激光熔覆层微观组织的演变[J]. 金属学报, 2002, 38(5): 495-500. Zhong Minlin, Liu Wenjin. Microstructure evolution of Stellite6+WC by high power laser cladding[J]. Acta Metallurgica Sinica, 2002, 38(5): 495-500. [11]秦承鹏, 郑玉贵. 17-4PH不锈钢表面激光熔覆钴基合金涂层的空蚀行为研究[J]. 腐蚀科学与防护技术, 2011, 23(3): 209-213. Qin Chengpeng, Zheng Yugui. Cavitation erosion behavior of a laser clad Co-based alloy on 17-4PH stainless steel[J]. Corrosion Science and Protection Technology, 2011, 23(3): 209-213. [12]Ganesh P, Moitra A, Tiwari P, et al. Fracture behavior of laser-clad joint of Stellite21 on AISI 316L stainless steel[J]. Materials Science and Engineering A, 2010, 527(16/17): 3748-3756. [13]Debapriya Patra Karmakar, Gopinath Muvvala, Ashish Kumar Nath. Effect of scan strategy and heat input on the shear strength of laser cladded Stellite21 layers on AISI H13 tool steel in as-deposited and heat treated conditions[J]. Surface and Coatings Technology, 2020, 384: 125331. [14]任 超, 李铸国, 疏 达, 等. 17-4PH不锈钢表面激光熔覆Stellite6涂层组织及耐水蚀性能[J]. 中国激光, 2017, 44(4): 101-108. Ren Chao, Li Zhuguo, Shu Da, et al. Microstructure and water erosion resistance property of Stellite6 coating by laser cladding on 17-4PH stainless steel surface[J]. Chinese Journal of Lasers, 2017, 44(4): 101-108. [15]Wang Zhihui, Wang Huaming, Liu Dong. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 2016, 43(4): 53-59. [16]王招阳, 林 健, 雷永平, 等. 激光熔覆制备Stellite6涂层的组织与性能[J]. 激光与红外, 2020, 50(10): 1172-1177. Wang Zhaoyang, Lin Jian, Lei Yongping, et al. Microstructure and properties of Stellite6 coating prepared by laser cladding[J]. Laser and Infrared, 2020, 50(10): 1172-1177. [17]张 林, 刘 刚, 曾 东, 等. 超高速激光熔覆Stellite 6涂层的抗汽蚀及冲蚀性能[J]. 表面技术, 2022, 51(4): 167-175. Zhang Lin, Liu Gang, Zeng Dong, et al. Anti-cavitation and erosion resistance of Stellite 6 coating by ultra-high speed laser cladding[J]. Surface Technology, 2022, 51(4): 167-175. [18]Zhang Hui, He Yizhu, Pan Ye, et al. Synthesis and characterization of NiCoFeCrAl3 high entropy alloy coating by laser cladding[J]. Advanced Materials Research, 2010, 97-101: 1408-1411. [19]薛承感. 17-4PH表面熔覆低碳钴基合金的抗汽蚀机理研究[D]. 杭州: 浙江工业大学, 2020. [20]张田力, 张大兵, 阳建君, 等. Stellite6/WC复合涂层微观组织和性能研究[J]. 机械强度, 2020, 42(5): 1081-1087. Zhang Tianli, Zhang Dabing, Yang Jianjun, et al. Study on microstructure and properties of Stellite6/WC composite coating[J]. Journal of Mechanical Strength, 2020, 42(5): 1081-1087. [21]中国腐蚀与防护协会. 腐蚀试验方法与坊腐蚀检测技术[M]. 北京: 化学工业出版社, 1996. |