[1]Siva R, Vimalson K A, Yogeshkumar P, et al. Study on optimization of spur gear performance with titanium carbide incorporated aluminium matrix composite[J]. Materials Today: Proceedings, 2021, 44: 3686-3691. [2]陈 强, 陈林芳, 杨明华. 18CrNiMo7-6钢的可控气氛高温渗碳工艺[J]. 金属热处理, 2022, 47(4): 231-239. Chen Qiang, Chen Linfang, Yang Minghua. High temperature carburizing process of 18CrNiMo7-6 steel in controlled atmosphere[J]. Heat Treatment of Metals, 2022, 47(4): 231-239. [3]戴建科, 韩 顺, 厉 勇, 等. 航空齿轮钢C69高温渗碳后的组织性能[J]. 金属热处理, 2022, 47(4): 219-225. Dai Jianke, Han Shun, Li Yong, et al. Microstructure and properties of C69 gear steel for aviation after high temperature carburizing[J]. Heat Treatment of Metals, 2022, 47(4): 219-225. [4]Wang N, Fang C F, Zhao L, et al. Distribution of inclusions in 18CrNiMo7-6 steel billet and its relationship with inclusion compositions[J]. Journal of Physics: Conference Series, 2020, 1699: 012026. [5]Wu J Z, Liu H I, Wei P T, et al. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel[J]. International Journal of Mechanical Sciences, 2020, 183: 105785. [6]Zhang Y, Lu L C, Xu G T, et al. Fatigue fracture of surface-modified layers in 18CrNiMo7-6 carburized steel[J]. Engineering Failure Analysis, 2022, 131: 105839. [7]Gai Y H, Yan Y, Li C N, et al. Failure analysis on the GCr15 bearing steel and the 20CrMo carburized steel nuts of the ball screw pair[J]. Applied Mechanics and Materials, 2014, 651: 29-33. [8]Mengaroni S, Bambach M D, Cianetti F, et al. Strengthening improvement on gear steels[J]. Steel Research International, 2016, 87(5): 608-613. [9]Dragatsis A, Fragkos-Livanios L, Papageorgiou D G, et al. Investigation of hardness behavior after carburizing and hardening of 15CrNi6 steel[J]. MATEC Web of Conferences, 2021, 359: 02006. [10]Kim K H, Lee W B, Kim T H, et al. Microstructure and fracture toughness of nitrided D2 steels using potential-controlled nitriding[J]. Metals, 2022, 12(1): 139-150. [11]O' Brien E C H C, Yeddu H K. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears[J]. Journal of Materials Science and Technology, 2020, 49: 157-165. [12]Lee S C, Ho W Y. The effects of surface hardening on fracture toughness of carburized steel[J]. Metallurgical Transactions A, 1989, 20(3): 519-525. [13]张博涵, 李浩楠, 高鹏冲, 等. 分级淬火对高铬铸铁轧辊组织的影响[J]. 金属热处理, 2022, 47(7): 15-20. Zhang Bohan, Li Haonan, Gao Pengchong, et al. Effect of step quenching process on microstructure of high-Cr cast iron roll[J]. Heat Treatment of Metals, 2022, 47(7): 15-20. [14]高殿奎. 提高定径轧辊寿命研究[J]. 金属热处理, 2001, 26(8): 29-30. Gao Diankui. Study on enhancement of service life for sizing roller[J]. Heat Treatment of Metals, 2001, 26(8): 29-30. [15]王锡灶, 张博涵, 李浩楠, 等. Nb合金化对高Cr铸铁轧辊组织的影响[J]. 中国冶金, 2022, 32(2): 60-66. Wang Xizao, Zhang Bohan, Li Haonan, et al. Effect of Nb alloying on microstructure of high-Cr cast iron rolls[J]. China Metallurgy, 2022, 32(2): 60-66. [16]Pöhl F. Local deformation and transformation behavior of retained austenite in 18CrNiMo7-6 after high-carbon carburizing treatment[J]. Materials Characterization, 2020, 167: 110446. [17]Park H S, Han J C, Lim N S, et al. Nano-scale observation on the transformation behavior and mechanical stability of individual retained austenite in CMnSiAl TRIP steels[J]. Materials Science and Engineering A, 2015, 627: 128486. [18]程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述[J]. 材料导报, 2023(7): 1-29. Cheng Xuan, Gui Xiaolu, Gao Guhui. Retained austenite in advanced high strength steels: A review[J]. Materials Reports, 2023(7): 1-29. |