[1]Liao H B, Zhan M Y, Li C B, et al. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1211-1219. [2]Yue Y, Xiang C, Nie J F, et al. Achieving ultra-strong magnesium-lithium alloys by low-strain rotary swaging[J]. Materials Research Letters, 2021, 9(6): 255-262. [3]Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg[J]. Journal of Magnesium and Alloys, 2021, 9(2): 489-498. [4]Yu H H, Xin Y C, Wang M Y, et al. Hall-Petch relationship in Mg alloys: A review[J]. Journal of Materials Science and Technology, 2018, 34(2): 248-256. [5]高 飞, 张 永, 王 强. 大塑性锻压道次对车用Mg-13Gd-4Y-2Zn-0.5Zr合金组织演变的影响[J]. 锻压技术, 2022, 47(4): 62-67. Gao Fei, Zhang Yong, Wang Qiang. Influence of large plastic forging passes on microstructure evolution of automotive Mg-13Gd-4Y-2Zn-0.5Zr alloy[J]. Forging and Stamping Technology, 2022, 47(4): 62-67. [6]Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988[J]. Materials Science and Engineering A, 2016, 652: 325-352. [7]朱嵩琦, 张金龙, 沈 辉, 等. 镁锂合金多向压缩的组织演变及力学性能[J]. 锻压技术, 2022, 47(9): 250-255. Zhu Songqi, Zhang Jinlong, Shen Hui, et al. Microstructure evolution and mechanical properties on Mg-Li alloy in multiaxial compression[J]. Forging and Stamping Technology, 2022, 47(9): 250-255. [8]Valiev R Z, Straumal B, Langdon T G. Using severe plastic deformation to produce nanostructured materials with superior properties[J]. Annual Review of Materials Research, 2022, 52: 357-382. [9]孙忠玉, 赵越顺. 分步锻压对汽车用AZ80镁合金耐蚀及耐磨性能的影响[J]. 锻压技术, 2023, 48(1): 23-28. Sun Zhongyu, Zhao Yueshun. Effect of step forging on corrosion resistance and wear resistance properties of AZ80 magnesium alloy for automobile[J]. Forging and Stamping Technology, 2023, 48(1): 23-28. [10]Huang Y, Jiang J. Microstructure and texture evolution during severe plastic deformation at cryogenic temperatures in an Al-0.1Mg alloy[J]. Metals, 2021, 11(11): 1822. [11]郭 炜, 王 德, 陆德平, 等. 循环闭式模锻工艺的数值模拟[J]. 锻压技术, 2017, 42(1): 149-154. Guo Wei, Wang De, Lu Deping, et al. Numerical simulation on cyclic closed-die forging technology[J]. Forging and Stamping Technology, 2017, 42(1): 149-154. [12]Guo W, Wang Q D, Ye B, et al. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging[J]. Journal of Alloys and Compounds, 2013, 558: 164-171. [13]Zhao G Z, Yang L, Duan X X, et al. Microstructure evolution and mechanical properties of AZ80 alloy reheated from as-cast and deformed states[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2): 450-456. [14]Metayer J, Ye B, Guo W, et al. Microstructure and mechanical properties of Mg-Si alloys processed by cyclic closed-die forging[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 66-75. [15]Guo W, Wang Q D, Ye B, et al. Microstructure and mechanical properties of AZ31-Mg2Si in situ composite fabricated by repetitive upsetting[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3755-3761. [16]Liao W J, Ye B, Zhang L, et al. Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging[J]. Materials Science and Engineering A, 2015, 642: 49-56. |