[1]王旭明. Q690桥梁钢焊接热影响区组织和性能研究[J]. 铁道建筑技术, 2022(12): 30-34. Wang Xuming. Study on microstructure and performance of welding heat-affected zone of Q690 bridge steel[J]. Railway Construction Technology, 2022(12): 30-34. [2]莫明立. 焊接顺序对汽车零件十字接头焊接残余应力及变形影响的数值分析[J]. 热加工工艺, 2015, 44(13): 220-223. Mo Mingli. Numerical simulation on influence of welding sequences on welding residual stress and deformation in a cross joint of auto parts[J]. Hot Working Technology, 2015, 44(13): 220-223. [3]Akinwamide S O, Venter A, Akinribide O J, et al. Residual stress impact on corrosion behaviour of hot and cold worked 2205 duplex stainless steel: A study by X-ray diffraction analysis[J]. Engineering Failure Analysis, 2022, 131: 105913. [4]黄向红. 焊接残余应力对疲劳强度的影响及改善[J]. 热加工工艺, 2010, 39(15): 167-169. Huang Xianghong. Effect of welding residual stress on fatigue strength and its improvement[J]. Hot Working Technology, 2010, 39(15): 167-169. [5]安俊伟. 焊接残余应力对梁柱节点抗震性能的影响[D]. 天津: 天津大学, 2005. An Junwei. The effect of welding residual stress to the performance of resistance to earthquake of beam-column connection[D]. Tianjin: Tianjin University, 2005. [6]卫 星, 肖 林, 唐继舜. 钢桁梁全焊桁片腹杆与节点焊接连接细节疲劳性能试验研究[J]. 铁道学报, 2018, 40(2): 110-116. Wei Xing, Xiao Lin, Tang Jishun. Fatigue performance of welded detail at connection between web member and full-welded joint in steel truss bridge[J]. Journal of the China Railway Society, 2018, 40(2): 110-116. [7]赵 锐. 焊接残余应力的数值模拟及控制消除研究[D]. 大连: 大连理工大学, 2006. Zhao Rui. Study ofwelding residual stress’s numerical simulation and relieving[D]. Dalian: Dalian University of Technology, 2006. [8]Zhao X C, Zhang Y D, Zhang H W, et al. Simulation of vibration stress relief after welding based on FEM[J]. Acta Metallurgica Sinica (English Letters), 2008, 21(4): 289-294. [9]Venkata K A, Kumar S, Dey H C, et al. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates[J]. Procedia Engineering, 2014, 86: 223-233. [10]Hu M, Li K, Li S, et al. Stress relief investigation using creep model considering back stress in welded rotor[J]. Journal of Constructional Steel Research, 2020, 169: 106017. [11]Dong P, Song S, Zhang J. Analysis of residual stress relief mechanisms in post-weld heat treatment[J]. International Journal of Pressure Vessels and Piping, 2014, 122: 6-14. [12]逯世杰, 王 虎, 戴培元, 等. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592. Lu Shijie, Wang Hu, Dai Peiyuan, et al. Effect of creep on prediction accuracy and calculating efficiency of residual stress in post weld heat treatment[J]. Acta Metallurgica Sinica, 2019, 55(12): 1581-1592. [13]胡 兴, 戴培元, 张超华, 等. 合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响[J]. 机械工程学报, 2019, 55(12): 72-82. Hu Xing, Dai Peiyuan, Zhang Chaohua, et al. Influence of lumped-pass method on calculation accuracy and efficiency of welding residual stress in SUS304 stainless steel butt joints[J]. Journal of Mechanical Engineering, 2019, 55(12): 72-82. [14]Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277. [15]Deng D, Murakawa H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43(2): 353-365. [16]Qiang B, Liu X, Li Y, et al. Mechanical properties of bridge-steel weldments at elevated temperatures[J]. Journal of Constructional Steel Research, 2022, 191: 107173. [17]石红昌, 黄安明, 刘 兴, 等. 超厚钢板对接焊接头残余应力数值模拟研究[J]. 四川建筑, 2023, 43(4): 260-263. Shi Hongchang, Huang Anming, Liu Xing, et al. Numerical simulation study of residual stress in butt-welded joint of ultra-thick steel plate[J]. Sichuan Architecture, 2023, 43(4): 260-263. [18]Ueda Y, Fukuda K. Analysis of welding stress relieving by annealing based on finite element method[J]. Transactions of the JWRI, 1975, 4(1): 39-45. [19]Qiang B, Xie Y, Xie Q, et al. Influence of post-weld heat treatment on welding residual stress in U-rib-to-deck joint[J]. Thin-Walled Structures, 2024, 196: 111550. [20]Bailey R W. Creep of steel under simple and compound stress[J]. Engineering, 1930, 121: 265. [21]穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990. [22]闫守海. 钢材高温蠕变性能试验研究[D]. 重庆: 重庆大学, 2015. Yan Shouhai. Experimental study on creep behavior in steel at elevated temperature[D]. Chongqing: Chongqing University, 2015. |