[1]成小乐, 彭 耀, 杨磊鹏, 等. 连续碳纤维增强金属基复合材料研究进展及展望[J]. 复合材料科学与工程, 2022(10): 119-128. Cheng Xiaole, Peng Yao, Yang Leipeng, et al. Research progress and prospect of continuous carbon fiber reinforced metal matrix composites[J]. Composites Science and Engineering, 2022(10): 119-128. [2]Sergei M. Carbon-fibre/metal-matrix composites: A review[J]. Journal of Composites Science, 2022, 6(10): 297. [3]张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4): 1-7. Zhang Di, Zhang Guoding, Li Zhiqiang. The current state and trend of metal matrix composites[J]. Materials China, 2010, 29(4): 1-7. [4]陈 林, 刘建军, 邹 武. 三维编织复合材料的微结构与力学性能研究进展[J]. 材料导报, 2010, 24(7): 71-75. Chen Lin, Liu Jianjun, Zou Wu. Research development of investigation into microstructure modeling and mechanical properties of three-dimensional braided composites[J]. Materials Review, 2010, 24(7): 71-75. [5]王一博, 刘振国, 胡 龙, 等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术, 2017, 60(19): 78-85. Wang Yibo, Liu Zhenguo, Hu Long, et al. Recent advancements of 3D braided composite and its applications in aerospace[J]. Aeronautical Manufacturing Technology, 2017, 60(19): 78-85. [6]石友安, 贺立新, 邱 波, 等. 碳布叠层穿刺复合材料多尺度传热特性研究[J]. 航空学报, 2016, 37(4): 1207-1217. Shi Youan, He Lixin, Qiu Bo, et al. Multiscale heat transfer analysis of Z-directional carbon fiber reinforced braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1207-1217. [7]陈 鼎, 董建峰, 马国芝, 等. 有色金属合金的深冷处理发展概况[J]. 材料导报, 2010, 24(21): 1-4. Chen Ding, Dong Jianfeng, Ma Guozhi, et al. The research about cryogenic treatment process of nonferrous alloys-A review[J]. Materials Review, 2010, 24(21): 1-4. [8]吉学英, 晋芳伟. 铝合金深冷处理研究进展[J]. 热加工工艺, 2019, 48(16): 25-28. Ji Xueying, Jin Fangwei. Research progress on deep cryogenic treatment of aluminum alloys[J]. Hot Working Technology, 2019, 48(16): 25-28. [9]易 翔, 陈 鼎. 复合材料深冷处理研究进展[J]. 金属热处理, 2012, 37(6): 73-76. Yi Xiang, Chen Ding. Review about cryogenic treatment of composite materials[J]. Heat Treatment of Metals, 2012, 37(6): 73-76. [10]Zhang Mingli, Pan Ran, Liu Baosheng, et al. The influence of cryogenic treatment on the microstructure and mechanical characteristics of aluminum silicon carbide matrix composites[J]. Materials, 2023, 16(1): 396. [11]Rasool Mohideen S, Aripin Mohd Shukri Mohd, Thamizhmanii S, et al. Deep cryogenic treatment on aluminum silicon carbide (Al-SiC) composite[J]. Advanced Materials Research, 2011, 383-390: 3320-3324. [12]Shivanna S, Sameer S Kulkarni, Samarth C, et al. Effect of cryogenic treatment on wear properties of aluminum Al356-zirconium silicate particulate metal matrix composite[J]. International Journal of Engineering and Advanced Technology (IJEAT), 2021, 10: 21-24. [13]Panchakshari H V, Girish D P, Krishn M. Effect of deep cryogenic treatment on microstructure, mechanical and fracture properties of aluminium-Al2O3 metal matrix composites[J]. International Journal of Soft Computing and Engineering, 2012, 1(6): 340-346. [14]Li G R, Cheng J F, Wang H M, et al. The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites[J]. Journal of Alloys and Compounds, 2017, 695: 1930-1945. [15]李桂荣, 王宏明, 袁雪婷, 等. 时效深冷循环处理7055铝合金的组织演变规律和性能特征[J]. 稀有金属材料与工程, 2013, 42(S2): 251-254. Li Guirong, Wang Hongming, Yuan Xueting, et al. Structure evolution and properties of 7055 aluminum alloy with cycle cryogenic treatment[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 251-254. [16]Gao Shan, Wu Zhisheng, Jin Pengfei, et al. Study on microstructure and properties of 5A06 aluminum alloy welded joint by deep cryogenic treatment[J]. Advanced Materials Research, 2011, 314-316: 927-931. [17]欧阳求保, 崔光华, 张 荻, 等. 深冷处理对SiCp增强铝基复合材料热膨胀性能的影响[J]. 机械工程材料, 2010, 34(2): 18-20. Ouyang Qiubao, Cui Guanghua, Zhang Di, et al. Influence of cryogenic treatment on thermal expansion properties of SiCp/Al composites[J]. Materials for Mechanical Engineering, 2010, 34(2): 18-20. [18]娄菊红, 杨延清, 原梅妮, 等. 金属基复合材料界面残余应力的研究进展[J]. 材料导报, 2009, 23(19): 75-78. Lou Juhong, Yang Yanqing, Yuan Meini, et al. Development of interfacial residual stresses in metal-matrix composites[J]. Materials Review, 2009, 23(19): 75-78. [19]黄 斌, 杨延清. 金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响[J]. 材料导报, 2006, 20(S1): 413-415. Huang Bin, Yang Yanqing. Analysis methods and the effect of thermal residual stresses on the structure and mechanical properties of metal matrix composites[J]. Materials Review, 2006, 20(S1): 413-415. [20]薛璐玮, 刘平平, 詹 倩, 等. 深冷处理对纯钛表面残余应力的影响[J]. 材料热处理学报, 2019, 40(11): 148-154. Xue Luwei, Liu Pingping, Zhan Qian, et al. Effect of cryogenic treatment on surface residual stress of pure titanium[J]. Transactions of Materials and Heat Treatment, 2019, 40(11): 148-154. [21]陈 鼎, 黎文献. 铝和铝合金的深冷处理[J]. 中国有色金属学报, 2000, 10(6): 891-895. Chen Ding, Li Wenxian. Cryogenic treatment on aluminum and aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 891-895. |