[1]李道乾, 刘玉庭, 王 雷, 等. 含氮奥氏体气阀钢的真空冶炼工艺[J]. 山东冶金, 2015, 37(4): 19-20. Li Daoqian, Liu Yuting, Wang Lei, et al. Technology of smelting nitrogen alloyed austenitic valve steel[J]. Shandong Metallurgy, 2015, 37(4): 19-20. [2]蔡远飞. 内燃机排气阀用镍基合金组织性能及抗氧化性能研究[D]. 镇江: 江苏科技大学, 2018. Cai Yuanfei. Microstructure properties and oxidation resistance research of a nickel-based superalloy for internal combustion engine exhaust valve[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. [3]余式昌. 微合金化奥氏体气阀钢的组织和性能研究[D]. 南京: 东南大学, 2006. Yu Shichang. Study on the microstructure and performance of austenitic valve steel by micro-alloying[D]. Nanjing: Southeast University, 2006. [4]冯 超, 任翠英, 程世长. sGB/T 12773—2008《内燃机气阀用钢及合金棒材》标准综述[J]. 冶金标准化与质量, 2009, 47(6): 9-12. Feng Chao, Ren Cuiying, Cheng Shichang. Summary of the standard GB/T 12773—2008 "Valve steel and superalloy bars for internal combustion engines"[J]. Metallurgical Standardization and Quality, 2009, 47(6): 9-12. [5]潘 佳. 镍基超合金气阀坯电镦成形匀细晶调控方法及工艺参数优化[D]. 重庆: 重庆大学, 2017. Pan Jia. The adjusted method and optimization of process parameters for valve billet with Ni-based superalloy during the electric upsetting to achieve grain refinement and uniform distribution[D]. Chongqing: Chongqing University, 2017. [6]王英虎, 郑淮北, 白青青, 等. Mn18Cr18N高氮奥氏体不锈钢的高温力学性能[J]. 金属热处理, 2022, 47(1): 172-177. Wang Yinghu, Zheng Huaibei, Bai Qingqing, et al. High temperature mechanical properties of Mn18Cr18N high nitrogen austenitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(1): 172-177. [7]Wang Limin, Xue Chengcheng, Yang Gang, et al. Laves phase in 22Cr-27Ni-2Ti-Al austenitic valve steel[J]. Journal of Iron and Steel Research International, 2016, 23(12): 1303-1308. [8]Hosseinzadeh Ali, Hashemi Seyyed Hojjat, Rastegari Habibollah, et al. Investigation of the notch depth effect on Charpy fracture energy and fracture surface features of API X65 steel[J]. Canadian Metallurgical Quarterly, 2023, 62(1): 36-48. |