[1]邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. Deng Yunlai, Zhang Xinming. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [2]周 芃. 5052Al-Mg合金热塑性变形的微观组织演变及流变行为研究[D]. 武汉: 华中科技大学, 2020. Zhou Peng. Influence of microstructure heterogentity on the corrosion resistance and microhardeness of 5052Al-Mg alloy[D]. Wuhan: Huazhong University of Science and Technology, 2020. [3]胡亦鹏. 船舶制造工艺现状及改进对策分析[J]. 船舶物资与市场, 2023, 31(1): 32-34. [4]李克超. 铝合金船舶的建造工艺研究[J]. 现代制造技术与装备, 2021, 57(6): 104-106. Li Kechao. Discussion on constructure technology of aluminum alloy ship[J]. Modern Manufacturing Technology and Equipment, 2021, 57(6): 104-106. [5]杨瑞青, 周 静, 王祝堂. 舰船及海洋工程变形铝合金[J]. 轻合金加工技术, 2019, 47(2): 1-8. Yang Ruiqing, Zhou Jing, Wang Zhutang. Wrought aluminum alloys for ship and marine engineering[J]. Light Alloy Fabrication Technology, 2019, 47(2): 1-8. [6]吕晓丹, 刘 斌, 刘 岩,等. 铝合金在海洋环境中的腐蚀行为研究进展[J]. 中国材料进展, 2022, 41(6):477-486. Lü Xiaodan, Liu Bin, Liu Yan, et al. Research progress on the corrosion behavior of aluminum alloys under marine environment[J]. Matrials China, 2022, 41(6):477-486. [7]陈佳铭. 铝合金在船舶中的应用分析[J]. 船舶物资与市场, 2020(6):11-12. [8]刘占先. 铝合金材料在船舶与海洋工程装备中的应用[J]. 船舶物资与市场, 2021, 29(6):47-48. [9]蒋海春. Zn对5059铝合金组织与性能的影响[D]. 长沙: 中南大学, 2014. Jiang Haichun. Effects of Zn on microstructures and properties of aluminum alloy 5059[D]. Changsha: Central South University, 2014. [10]Aballe A, Bethencourt M, Botana F J, et al. EIS study of the electrochemical response of AA5083 alloy under anodic polarisation[J]. Corrosion Reviews, 2000, 18(1): 1-12. [11]Crane C B, Gangloff R P. Stress corrosion cracking of Al-Mg alloy 5083 sensitized at low temperature[J]. Corrosion, 2016, 72(2): 221-241. [12]李姗珊, 朱 凯, 张海涛, 等. Zn、Ag对Al-Mg合金力学性能和腐蚀性能的影响[J]. 轻合金加工技术, 2022, 50(3): 19-24. Li Shanshan, Zhu Kai, Zhang Haitao, et al. Influence of Zn and Ag on mechanical and corrosion properties of Al-Mg alloy[J]. Light Alloy Fabrication Technology, 2022, 50(3):19-24. [13]胡永刚, 董瑞峰, 张肖雨, 等. 5×××系铝合金主要腐蚀形式研究现状及发展趋势[J]. 江西冶金, 2023, 43(1): 39-45. Hu Yonggang, Dong Ruifeng, Zhang Xiaoyu, et al. Research status and development trend of the main corrosion forms of 5××× series aluminum[J]. Jiangxi Metallurgy, 2023, 43(1): 39-45. [14]王银行. Zn含量对Al-Mg-Zn-Mn-Cu合金组织和性能的影响[D]. 郑州: 郑州大学, 2022. Wang Yinhang. Effect of Zn content on microstructure and properties of Al-Zn-Mg-Cu alloys[D]. Zhengzhou: Zhengzhou University, 2022. [15]谌红果, 卫广智, 马 琳, 等. 稀土元素钇和固溶处理对Al-8Mg合金组织和力学性能的影响[J]. 热加工工艺, 2016, 45(4): 76-78. Chen Hongguo, Wei Guangzhi, Ma Lin, et al. Effect of rare Y and solid solution treatment on microstructure and mechanical properties of Al-8Mg alloy[J]. Hot Working Technology, 2016, 45(4): 76-78. [16]王华庆. 高强度铸造Al-Mg-Zn合金的研究[D]. 北京: 北京交通大学, 2008. Wang Huaqing. Study on high strength cast Al-Mg-Zn alloy[D]. Beijing: Beijing Jiaotong University, 2008. [17]王振玲. Al-Mg合金高压凝固组织与相演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. Wang Zhenling. Invesigation on evolution of microstructure and phase in Al-Mg alloy solidifying under high pressure[D], Harbin: Harbin Institute of Technology, 2007. [18]王晓芬. 超细晶纳米晶Al-Mg合金不同晶界的溶质元素再分布[D]. 镇江: 江苏大学, 2021. Wang Xiaofen. Solute redistribution in ultrafine/nano-grained Al-Mg alloys with different grain boundaries[D]. Zhenjiang: Jiangsu University, 2021. [19]蒋海春, 叶凌英, 张新明, 等. 5059高镁铝合金均匀化热处理工艺[J]. 中南大学学报(自然科学版), 2014, 45(12): 4138-4144. Jiang Haichun, Ye Lingying, Zhang Xinming, et al. Homogenization heat treatment process of 5059 high Mg containing aluminum alloy[J]. Journal of Central South University(Science and Technology), 2014, 45(12): 4138-4144. [20]王 培, 邵继鹏, 李占国, 等. 5059铝合金的铸态及均匀化组织[J]. 金属热处理, 2015, 40(5): 48-52. Wang Pei, Shao Jipeng, Li Zhanguo, et al. Microstructure of as-cast and homogenized 5059 aluminum alloy[J]. Heat Treatment of Metals, 2015, 40(5): 48-52. [21]房洪杰, 刘 慧, 孙 杰, 等. 5×××系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 211-220. Fang Hongjie, Liu Hui, Sun Jie, et al. Research status and development trend of 5××× series aluminum alloys[J]. Materials Reports, 2023, 37(21): 211-220. |