[1]楚朝阳. 二次挤压对2024铝合金组织性能的影响[D]. 沈阳: 东北大学, 2022. Chu Chaoyang. Effect of secondary extrusion on microstructure and properties of 2024 aluminum alloy[D]. Shenyang: Northeastern University, 2022. [2]臧金鑫, 陈军洲, 韩 凯, 等. 航空铝合金研究进展与发展趋势[J]. 中国材料进展, 2022, 41(10): 769-777, 807. Zang Jinxin, Chen Junzhou, Han Kai, et al. Research progress and development tendency of aeronautical aluminum alloys[J]. Materials China, 2022, 41(10):769-777, 807. [3]郭丰佳, 麻 芳, 肖富来, 等. 固溶处理对Al-Zn-Cu-Mg-Zr-Ce合金组织性能的影响[J]. 金属热处理, 2023, 48(6): 121-125. Guo Fengjia, Ma Fang, Xiao Fulai, et al. Effect of solution treatment on microstructure and properties of Al-Zn-Cu-Mg-Zr-Ce alloy[J]. Heat Treatment of Metals, 2023, 48(6):121-125. [4]Woon S H, Hyoun W K. Galvanic coupling effect on corrosion behavior of Al alloy-matrix composites[J]. Metals and Materials International, 2002, 8(6): 571-574. [5]Maruyama B. Discontinuously reinforced aluminum: Current status and future direction[J]. JOM, 1999, 51(11):59-61. [6]崔 岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6):3-6. Cui Yan. Aerospace applications of silicon carbide particulate reinforcedaluminiun matrix composites[J]. Journal of Materials Engineering, 2002(6):3-6. [7]郭新风, 贾 磊, 吕振林, 等. 颗粒增强铜基复合材料的研究现状与发展趋势[J]. 机械工程材料, 2023, 47(5): 109-117. Guo Xinfeng, Jia Lei, Lü Zhenlin, et al. Research status and development trend of particle reinforced copper matrix composite[J]. Materials for Mechanical Engineering, 2023,47(5):109-117. [8]潘 冉, 刘宝胜, 曾元松, 等. 深冷处理对15%SiCp/2009铝基复合材料组织与力学性能的影响[J]. 金属热处理, 2022, 47(9): 65-70. Pan Ran, Liu Baosheng, Zeng Yuansong, et al. Effect of cryogenic treatment on microstructure and mechanical properties of 15%SiCp/2009 aluminum matrix composite[J]. Heat Treatment of Metals, 2022, 47(9):65-70. [9]Xia X S, Chen Q, Zhao Z D, et al. Microstructure texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging[J]. Journal of Alloys and Compounds, 2015, 623(8): 62-68. [10]顾 建, 李冬青, 刘胜春, 等. SiC粒径对SiCp/2024铝合金复合材料显微组织和力学性能的影响[J]. 机械工程材料, 2020, 44(9): 77-81. Gu Jian, Li Dongqing, Liu Shengchun, et al. Effect of SiC particle size on microstructure and mechanical properties of SiCp/2024 aluminum alloy composite[J]. Materials for Mechanical Engineering, 2020, 44(9): 77-81. [11]张 琪, 王全兆, 肖伯律, 等. 粉末冶金制备SiCP/2009Al复合材料的相组成和元素分布[J]. 金属学报, 2012, 48(2): 135-141. Zhang Qi, Wang Quanzhao, Xiao Bolü, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy[J]. Acta Metallurgica Sinica, 2012, 48(2): 135-141. [12]Mondolfo L F. Aluminum Alloys: Structure and Properties[M]. London: Butterworths, 1976: 1. [13]李 晶, 荣 健, 吕海青, 等. 固溶温度对SiCp/Al复合材料组织及残余应力的影响[J]. 金属热处理, 2019, 44(8):154-157. Li Jing, Rong Jian, Lü Haiqing, et al. Influence of solution treatment temperature on microstructure and residual stress of SiCp/Al composite[J]. Heat Treatment of Metals, 2019, 44(8):154-157. [14]马 盼. 高压烧结SiC增强铝基复合材料组织及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. Ma Pan. Microstructure and properties of SiCp/Al sintered by high pressure[D]. Harbin: Harbin Institute of Technology, 2010. [15]曹 振, 李 季, 罗 平, 等. 离子渗氮对304L不锈钢组织及高温耐磨性能的影响[J]. 金属热处理, 2022, 47(7): 253-258. Cao Zhen, Li Ji, Luo Ping, et al. Effect of plasma nitriding on microstructure and high temperature wear resistance of 304L stainless steel[J]. Heat Treatment of Metals, 2022, 47(7):253-258. [16]朱 爽, 刘 云, 谢黎明, 等. T6热处理对SiCp/Al复合材料摩擦磨损性能的影响[J]. 金属热处理, 2020, 45(3): 114-118. Zhu Shuang, Liu Yun, Xie Liming, et al. Effect of T6 heat treatment on friction and wear properties of SiCp/Al composites[J]. Heat Treatment of Metals, 2020, 45(3):114-118. |