[1]中国航空材料手册编辑委员会. 中国航空材料手册: 结构钢不锈钢分册[M]. 北京: 中国标准出版社, 1988. [2]黄晓斌, 罗通伟, 何晓辉. 汽轮机末级叶片用钢1Cr12Ni3Mo2VN的研制[J]. 特钢技术, 2005, 10(3): 51-57. Huang Xiaobin, Luo Tongwei, He Xiaohui. Development of exhaust stage blade steel 1Cr12Ni3Mo2VN for steam turbine[J]. Special Steel Technology, 2005, 10(3): 51-57. [3]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behavior in modified 9Cr-1Mo steel[J]. Computational Materials Science, 2009, 47(2): 568-576. [4]李俊儒, 周乐育, 龚 臣, 等. 10Cr12Ni3Mo2VN马氏体耐热钢奥氏体晶粒长大行为[J]. 材料热处理学报, 2014, 35(S1): 106-111. Li Junru, Zhou Leyu, Gong Chen, et al. Growth behavior of austenite grain in heat resistant steel 10Cr12Ni3Mo2VN[J]. Transactions of Materials and Heat Treatment, 2014, 35(S1): 106-111. [5]李俊儒, 龚 臣, 陈 列, 等. 10Cr12Ni3Mo2VN超超临界机组用叶片钢的热变形行为[J]. 金属学报, 2014, 50(9): 1063-1070. Li Junru, Gong Chen, Chen Lie, et al. Hot deformation behavior of blades steel 10Cr12Ni3Mo2VN for ultrasupercritical units[J]. Acta Metallurgica Sinica, 2014, 50(9): 1063-1070. [6]贺小毛. 1Cr12Ni3Mo2VN核电特大型叶片省力成形方法及组织控制[D]. 北京: 机械科学研究总院, 2017. [7]贺小毛, 蒋 鹏, 林锦棠, 等. 1Cr12Ni3Mo2VN核电用叶片钢高温本构关系[J]. 塑性工程学报, 2016, 23(4): 96-100. He Xiaomao, Jiang Peng, Lin Jintang, et al. High temperature constitutive equations of 1Cr12Ni3Mo2VN alloy steel for nuclear power blades[J]. Journal of Plasticity Engineering, 2016, 23(4): 96-100. [8]曾泽瑶, 杨银辉, 曹建春, 等. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169, 18189. Zeng Zeyao, Yang Yinhui, Cao Jianchun, et al. Study on the hot compression recrystallization behavior of 18Cr-3Mn-1Ni-0.22N low nickel type duplex stainless steel[J]. Materials Reports, 2021, 35(18): 18163-18169, 18189. [9]叶丽燕. 大型核电转子用25Cr2Ni4MoV钢锻造及热处理过程组织演化研究[D]. 北京: 机械科学研究总院, 2020. [10]赵嫚嫚, 秦 森, 冯 捷, 等. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968. Zhao Manman, Qin Sen, Feng Jie, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1-3)Ni(1-7)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968. [11]王 屾. 耐海水高强螺栓材料比较研究[D]. 北京: 北京化工大学, 2013. [12]董建新. 镍基合金管材挤压及组织控制[M]. 北京: 冶金工业出版社, 2014. [13]Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials and Design, 2010, 31(3): 1174-1179. [14]陈礼清, 赵 阳, 徐香秋, 等. 一种低碳钒微合金钢的动态再结晶与析出行为[J]. 金属学报, 2010, 46(10): 1215-1222. Chen Liqing, Zhao Yang, Xu Xiangqiu, et al. Dynamic recrystallization and precipitation behaviors of a kind of low carbon V-microallyed steel[J]. Acta Metallurgica Sinica, 2010, 46(10): 1215-1222. [15]Mcqueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995, 53(1/2): 293-310. [16]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [17]张弘斌. GH99高温合金高温变形行为及组织演化规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [18]代孟强, 桂在涛, 廖振成, 等. 42CrMoA钢动态再结晶行为研究[J]. 热处理, 2022, 37(2): 1-10, 14. Dai Mengqiang, Gui Zaitao, Liao Zhencheng, et al. Research on dynamic recrystallization behavior of 42CrMoA steel[J]. Heat Treatment, 2022, 37(2): 1-10, 14. [19]邓亚辉, 杨银辉, 曹建春, 等. 23Cr-2.2Ni-6.3Mn-0.26N节Ni型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 446-456. Deng Yahui, Yang Yinhui, Cao Jianchun, et al. Research on dynamic recrystallization behavior of 23Cr-2.2Ni-6.3Mn-0.26N low nickel type duplex stainless steel[J]. Acta Metallurgica Sinica, 2019, 55(4): 446-456. [20]Jonas J J, Quelennec X, Lan J, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9): 2748-2756. |