[1]谢 毅, 肖 杰. 高速铁路发展现状及趋势研究[J]. 高速铁路技术, 2021, 12(2): 23-26. Xie Yi, Xiao Jie. Research on high-speed railway development status and trend[J]. High Speed Railway Technology, 2021, 12(2): 23-26. [2]余祖俊, 唐 涛,李开成, 等.智慧高速铁路运行控制系统发展趋势综述[J]. 铁道学报, 2024, 46(1): 1-12. Yu Zujun, Tang Tao, Li Kaicheng, at al. Overview of development trends of intelligent high-speed rail train control system[J]. Journal of the China Railway Society, 2024, 46(1): 1-12. [3]TB/T 2344—2020, 钢轨 第1部分: 43 kg/m~75kg/m钢轨[S]. [4]周清跃. 我国钢轨轨型及定尺长度的百年发展历程[J]. 中国铁路, 2022(5): 42-46. Zhou Qingyue. Development history of rail type and fixed length in China[J]. China Railway, 2022(5): 42-46. [5]康 皓. U75V重轨在线热处理工艺关键技术的实验研究[D]. 沈阳: 东北大学, 2012. [6]董延翔. 全长淬火重型钢轨的发展现状及百米长尺全长淬火高速轨的技术应用[C]//2009年全国长材生产技术交流会论文集. 中国金属学会, 2009: 71-74. [7]董华利. U71Mn, U75V和U78CrV钢轨在线热处理后性能改善比较[J]. 金属热处理, 2016, 41(8): 133-137. Dong Huali. Comparison of property improvement of U71Mn, U75V and U78CrV rail steels by online heat treatment[J]. Heat Treatment of Metals, 2016, 41(8): 133-137. [8]于有相. 钢轨热处理生产工艺及产品现状[J]. 铁路采购与物流, 2022, 17(4): 55-57. [9]李 闯. U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43(1): 152-156. Li Chuang. Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43(1): 152-156. [10]Singh S S, Gaikwad A, Singh R R, et al. Comparison of mechanical properties of dual phase steel for different quenching mediums[J]. International Journal of Mechanical and Production Engineering Research and Development, 2015, 5(4): 1-8. [11]徐跃明, 李 俏, 罗新民, 等. 热处理技术进展[J]. 金属热处理, 2015, 40(9): 1-15. Xu Yueming, Li Qiao, Luo Xinmin, et al. Technology progress in heat treatment[J]. Heat Treatment of Metals, 2015, 40(9): 1-15. [12]杨建伟. 钢轨“喷风”淬火工艺的应用[J]. 金属热处理, 2006, 31(1): 75. Yang Jianwei. Application of “spraying wind” quenching process on rails[J]. Heat Treatment of Metals, 2006, 31(1): 75. [13]Buono V, Gonzalez B M, Lima T M, et al. Measurement of fine pearlite interlamellar spacing by atomic force microscopy[J]. Journal of Materials Science, 1997, 32(4): 1005-1008. [14]Tashiro H, Sato H. Effect of alloying elements on the lamellar spacing and the degree of regularity of pearlite in eutectoid steel[J]. Nippon Kinzoku Gakkaishi, 1991, 55(10): 1078-1085. [15]Marder A R, Bramfitt B L. The effect of morphology on the strength of pearlite[J]. Metallurgical Transactions A, 1976, 7(3): 365-372. [16]Dobuzhskaya A B, Galitsyn G A, Yunin G N, et al. Effect of chemical composition, microstructure and mechanical properties on the wear resistance of rail steel[J]. Steel in Translation, 2021, 50(12): 906-910. [17]Wang M M, Zhang F C, Yang Z N. Effects of alloying elements and cooling rates on the high-strength pearlite steels[J]. Materials Science and Technology, 2017, 13(14): 1673-1680. [18]Wu M W, Tsao L C, Shu G J, et al. The effects of alloying elements and microstructure on the impact toughness of powder metal steels[J]. Materials Science and Engineering A, 2012, 538: 135-144. [19]Honjo M, Kimura T, Hase K. Effect of Cr on lamellar spacing and high-temperature stability in eutectoid steels[J]. ISIJ International, 2016, 56(1): 161-167. [20]周学源. 合金元素对渗碳体长大动力学及热稳定性影响[D]. 南京: 东南大学, 2014. [21]Miyamoto G, Li Z D, Usuki H, et al. Alloying effects on reverse transformation to austenite from pearlite or tempered martensite structures[J]. Materials Science Forum, 2010, 638: 3400-3405. [22]Zhang G H, Chae J Y, Kim K H, et al. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass%C alloy[J]. Materials Characterization, 2013, 81: 56-67. [23]Liu S, Zhang F C, Yang Z, et al. Effects of Al and Mn on the formation and properties of nanostructured pearlite in high-carbon steels[J]. Materials and Design, 2016, 93: 73-80. [24]李 波, 朱国明, 陶功明, 等. 高铁用U75V钢轨钢动态CCT曲线[J]. 钢铁研究学报, 2014, 26(11): 20-24. Li Bo, Zhu Guoming, Tao Gongming, et al. Dynamic CCT curve of U75Vsteel for high-speed railway[J]. Journal of Iron and Steel Research, 2014, 26(11): 20-24. [25]王嘉伟, 薛虎东, 赵桂英, 等. 包钢百米75 kg/m U75V在线热处理钢轨研发[J]. 包钢科技, 2020, 46(2): 59-63. Wang Jiawei, Xue Hudong, Zhao Guiying, et al. Research and development of 100-metre 75 kg/m U75V online heat treated rail of Baotou steel[J]. Science and Technology of Baotou Steel, 2020, 46(2): 59-63. [26]王立新, 李智丽, 彭 军, 等. U75V钢相变动力学曲线测定及热处理工艺研究[J]. 包钢科技, 2015, 41(2): 28-32. Wang Lixin, Li Zhili, Peng Jun, et al. Determination of phase transformation kinetics curves and research on heat treatment technology for U75V steel[J]. Science and Technology of Baotou Steel, 2015, 41(2): 28-32. [27]张建国, 敬雄刚. U75V钢轨TTT曲线、CCT曲线及感应热处理的显微组织分析[J]. 热加工工艺, 2010, 39(8): 168-170. Zhang Jianguo, Jing Xionggang. TTT&CCT curve and microstructure analysis of U75V rail after induction heat treatment[J]. Hot Working Technology, 2010, 39(8): 168-170. [28]王立新. 包钢U75V钢轨在线热处理工艺及性能研究[D]. 包头: 内蒙古科技大学, 2016. [29]刘懿乐, 董华利, 易 军, 等. 在线连续冷却对U75V钢轨组织和性能的影响[J]. 金属热处理, 2017, 40(1): 84-86. Liu Yile, Dong Huali, Yi Jun, et al. Influence of online continuous cooling on microstructure and properties of U75V rail steel[J]. Heat Treatment of Metals, 2017, 40(1): 84-86. [30]Gao M X, Yang J, Zhang Y, et al. Effect of alloying elements on pearlite critical cooling rate of U75V rail-steel[J]. Transactions of the Indian Institute of Metals, 2022, 76(3): 665-673. [31]陈丹丹. U75V 百米钢轨风冷淬火开淬温度对性能的影响研究[D]. 鞍山: 辽宁科技大学, 2022. [32]鞍钢股份有限公司. 一种低温条件下在线热处理百米钢轨的制造方法: CN202210584018.5[P]. 2022-09-13. [33]Lan Y, Zhao G, Xu Y, et al. Effects of quenching temperature and cooling rate on the microstructure and mechanical properties of U75V rail steel[J]. Metallography, Microstructure, and Analysis, 2019, 8(2): 249-255. [34]Zhou T, Dong X, Jing C, et al. Numerical analysis of turbulent round jet impingement heat transfer at high temperature difference[J]. Applied Thermal Engineering, 2016, 100: 55-61. [35]李智丽, 何建中, 贺景春, 等. 一种珠光体钢轨硬化的热处理工艺: CN105483347A[P]. 2016-04-13. [36]张福成, 吕 博, 王明明, 等. 一种超级珠光体钢轨钢及其制备方法: CN105112786B[P]. 2015-01-12. [37]韩振宇, 邹 明, 汪 渊, 等. 钒铬微合金化超细珠光体钢轨: CN104087836A[P]. 2014-10-08. [38]王立新, 智建国, 李智丽, 等. 终冷温度和保温时间对U75V钢组织及硬度的影响[J]. 金属热处理, 2016, 41(5): 120-123. Wang Lixin, Zhi Jianguo, Li Zhili, et al. Effects of final cooling temperature and holding time on microstructure and hardness of U75V steel[J]. Heat Treatment of Metals, 2016, 41(5): 120-123. [39]刘 磊. 平板超音速风冷淬火冷却强度和均匀性的研究[D]. 鞍山: 辽宁科技大学, 2020. [40]周剑华, 任安超, 吉 玉, 等. 喷嘴与钢轨间距离对喷风冷却效果的影响[J]. 武钢技术, 2012, 50(5): 14-16. Zhou Jianhua, Ren Anchao, Ji Yu, et al. The influences of distance between nozzles and rail on the effect of cooling with compressed air[J]. Wisco Technology, 2012, 50(5): 14-16. [41]费俊杰, 周剑华, 董茂松, 等. 全长在线热处理钢轨生产工艺研究及产品开发[J]. 铁路技术创新, 2019, 18(2): 69-75. Fei Junjie, Zhou Jianhua, Dong Maosong, et al. Research on the production process of full-length on-line heat-treated rails and product development[J]. Railway Technical Innovation, 2019, 18(2): 69-75. [42]Hao K, Di W, Zhao X. Surface temperature change of U75V 60 kg/m heavy rail during heat treatment[J]. Journal of Iron and Steel Research International, 2013, 20(2): 33-37. [43]宋磊鹏. U75V 重轨超音速风冷淬火流场和温度场的研究[D]. 鞍山: 辽宁科技大学, 2021. [44]李公法, 屈海端, 杨金堂, 等. U71Mn重轨淬火温度场及其影响因素研究[J]. 现代制造工程, 2010(11): 65-68. Li Gongfa, Qu Haiduan, Yang Jintang, et al. Temperature field and its influencing factors of U71Mn heavy rail during quenching[J]. Modern Manufacturing Engineering, 2010(11): 65-68. [45]周剑华, 林 刚, 吴 迪, 等. 60 kg/m重轨冷却过程中的温度场有限元模拟及分析[J]. 钢铁研究学报, 2007, 19(11): 29-32. Zhou Jianhua, Lin Gang, Wu Di, et al. Finite element simulation and analysis of temperature field of 60 kg/m heavy rail during cooling[J]. Journal of Iron and Steel Research, 2007, 19(11): 29-32. [46]李欣灿, 陈 文, 荣锐兵, 等. 重轨淬火风冷温度场的模拟[J]. 武汉理工大学学报, 2012, 34(7): 146-148. Li Xincan, Chen Wen, Rong Ruibing, et al. Simulation of temperature-field during rail air-cooling quenching process[J]. Journal of Wuhan University of Technology, 2012, 34(7): 146-148. [47]杨金堂, 陈 文, 李公法, 等. 基于Fluent的重轨淬火风冷过程的数值模拟[J]. 热加工工艺, 2012, 41(4): 165-167. Yang Jintang, Chen Wen, Li Gongfa, et al. Numerical simulation of quenching air cooling process for steel rail based on Fluent[J]. Hot Working Technology, 2012, 41(4): 165-167. [48]陈 锋, 鲁明正, 秦广城. U71Mn钢轨淬火工艺及装置的改进[J]. 轧钢, 2011, 28(6): 64-66. Chen Feng, Lu Mingzheng, Qin Guangcheng. Improvement of quenching technology and equipment for U71Mn rail[J]. Steel Rolling, 2011, 28(6): 64-66. [49]Matsuoka R, Nakaseko M, Kojo R, et al. Rail cooling method and rail cooling device: US20150027599[P]. 2015-01-29. [50]郑体成. 变断面钢轨热处理用喷风冷却装置: CN2177729[P]. 1994-12-26. [51]李德虹, 王 权. U71Mn钢轨轨端热处理工艺改进[J]. 金属热处理, 2004, 29(12): 65-68. Li Dehong, Wang Quan. Improvement of the heat treatment process of U71Mn steel rail-head[J]. Heat Treatment of Metals, 2004, 29(12): 65-68. [52]单 哲. 60 kg/m重轨风冷淬火仿形喷嘴的设计研究[D]. 鞍山: 辽宁科技大学, 2022. [53]李绍堂. 钢轨全长淬火工艺研究[D]. 沈阳: 东北大学, 2011. [54]张 进. 60 kg/m重轨在线热处理工艺的实验研究[D]. 沈阳: 东北大学, 2011. |