[1]康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6):1-7. Kang Yonglin. Lightweight vehicle, advanced high strength steel and energy saving and emission[J]. Iron and Steel, 2008, 43(6):1-7. [2]Zhou Y X, Song X T, Liang J W, et al. Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in low-carbon-medium-Mn steel: Process-structure-property relationship[J]. Materials Science and Engineering A, 2018, 718: 267-276. [3]Chang Y, Wang M, Wang N,et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability[J]. Materials Science and Engineering A, 2018, 721: 179-188. [4]Kim D H, Kang J H, Ryu J H, et al. Effect of austenitization of cold-rolled 10wt% Mn steel on microstructure and discontinuous yielding[J]. Materials Science and Engineering A, 2020, 774: 138930. [5]祁晓亮, 李 岩, 定 巍, 等. 含Al中锰TRIP钢原始组织对临界退火后组织与力学性能的影响[J]. 金属热处理, 2022, 47(4): 24-29. Qi Xiaoliang, Li Yan, Ding Wei, et al. Effect of original microstructure of medium manganese TRIP steel containing Al on microstructure and mechanical properties after intercritical annealing[J]. Heat Treatment of Metals, 2022, 47(4): 24-29. [6]Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel[J]. Materials Science and Engineering A, 2021, 800: 140344. [7]Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing[J]. Materials Science and Engineering A, 2019, 745: 212-220. [8]Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Materials Science and Engineering A, 2011, 528: 6661-6666. [9]Zhang Y, Ding H, Zhu H K, et al. Superior strength-ductility combination achieved via double heterogeneities of microstructure and composition: An example of medium manganese steel[J]. Materials Science and Engineering A, 2022, 834: 142443. [10]王 涛, 杨达朋, 易红亮. 退火温度对0.14C-7Mn热轧中锰钢微观组织和力学性能的影响[J]. 金属热处理, 2023, 48(11):83-89. Wang Tao, Yang Dapeng, Yi Hongliang. Effect of annealing temperature on microstructure and mechanical properties of 0.14C-7Mn hot-rolled medium manganese steel[J]. Heat Treatment of Metals, 2023, 48(11): 83-89. [11]Huo W, Song R, Zhang Z, et al. Effect of Nb contents on microstructure characteristics and yielding behavior of Fe-4Mn-2Al-0.2C steel[J]. Materials Science and Engineering A, 2021, 819: 141457. [12]徐娟萍, 付 豪, 王 正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 20-25. Xu Juanping, Fu Hao, Wang Zheng, et al. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 20-25. [13]胡进朋, 万德成, 马少康, 等. 临界区退火时间对冷轧中锰钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(11): 96-101. Hu Jinpeng, Wan Decheng, Ma Shaokang, et al. Effect of intercritical annealing time on microstructure and mechanical properties of cold rolled medium manganese steel[J]. Heat Treatment of Metals, 2023, 48(11): 96-101. [14]胡进朋, 万德成, 李 杰, 等. 临界区退火温度对中锰钢组织性能和变形行为的影响[J]. 材料热处理学报, 2022, 43(2): 104-111. Hu Jinpeng, Wan Decheng, Li Jie, et al. Effect of intercritical annealing temperature on microstructure, properties and deformation behavior of medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 104-111. [15]Jeong M S, Park T M, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure[J]. Scripta Materialia, 2021, 190: 16-21. [16]Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system[J]. Journal of Alloys and Compounds, 2017, 691: 51-59. [17]Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Materials Science and Engineering A, 2012, 542(5): 31-39. [18]Zhang B G, Zhang X M, Wang G D, et al. Age-hardening medium Mn steel with high strength and large ductility[J]. Materials Science and Engineering A, 2019, 756: 35-40. [19]Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels[J]. Acta Materialia, 2017, 139(7): 39-50. [20]Sun B H, Ma Y,Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface[J]. Acta Materialia, 2019, 178: 10-25. [21]Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. Journal of Materials Science, 2019, 54(8): 6565-6578. [22]Ma J W, Liu H T, Lu Q, et al. Transformation kinetics of retained austenite in the tensile Lüders strain range in medium Mn steel[J]. Scripta Materialia, 2019, 169: 1-5. [23]Binhan S, Nicolas V, Fateh F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel[J]. Scripta Materialia, 2017, 133: 9-13. [24]Yang F, Luo H, Pu E, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity[J]. International Journal of Plasticity, 2018, 103: 188-202. [25]Xu Y, Hu Z, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Materials science and Engineering A, 2017, 688: 40-55. |