[1]代正辅, 仲生元, 蒲忠汶. GH2132合金热处理后硬度偏低原因分析[J]. 甘肃科技, 2012, 28(19): 26-27, 46. [2]田宪华, 闫奎呈, 赵 军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022, 33(7): 872-881. Tian Xianhua, Yan Kuicheng, Zhao Jun, et al. Properties at elevated temperature and high strain rate and establishment of Johnson-Cook constitutive model for GH2132[J]. China Mechanical Engineering, 2022, 33(7): 872-881. [3]Frisk R, Andersson I Å N, Rogberg B. Cast structure in alloy A286, an iron-nickel based superalloy[J]. Metals, 2019, 9(6): 711. [4]邰清安, 关 红, 国振兴, 等. 热处理制度对GH2132合金组织性能的影响[J]. 材料热处理学报, 2015, 36(2): 55-59. Tai Qingan, Guan Hong, Guo Zhenxing, et al. Effects of heat treatments on microstructure and mechanical properties of GH2132 superalloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(2): 55-59. [5]冯光勇, 宫晓春. 时效温度对GH2132合金组织与力学性能的影响[J]. 金属热处理, 2020, 45(1): 96-100. Feng Guangyong, Gong Xiaochun. Effect of aging temperature on microstructure and mechanical properties of GH2132 alloy[J]. Heat Treatment of Metals, 2020, 45(1): 96-100. [6]张 兵, 刘鹏茹, 陈韩锋, 等. 铸态GH2132合金热变形行为和热加工图[J]. 中国有色金属学报, 2022, 32(2): 466-475. Zhang Bing, Liu Pengru, Chen Hanfeng, et al. Thermal deformation behavior and hot processing map of as-cast GH2132 alloy[J]. The Chinses Journal of Nonferrous Metals, 2022, 32(2): 466-475. [7]陈韩锋, 杨 艳, 董生茂, 等. 不同渣料对GH2132合金电渣锭冶金质量影响研究[J]. 甘肃科技, 2020, 36(17): 38-41. [8]毕中南. 航空发动机用高温合金及其制备技术[J]. 大飞机, 2021(3): 12-15. [9]Wei L L, Zheng J H, Chen L Q, et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J]. Corrosion Science, 2018, 142: 79-92. [10]Wagner C. Beitrag zur theorie des anlaufvorgangs[J]. Zeitschrift für Physikalische Chemie, 1933, 21(1): 25-41. [11]Agustianingrum M P, Latief F H, Park N, et al. Thermal oxidation characteristics of Fe(CoCrMnNi) medium and high-entropy alloys[J]. Intermetallics, 2020, 120: 106757. [12]李 敬, 杨跃辉, 苑少强, 等. Fe-40%Ni合金的高温氧化行为[J]. 金属热处理, 2022, 47(2): 74-77. Li Jing, Yang Yuehui, Yuan Shaoqiang, et al. Oxidation behavior of Fe-40%Ni alloy at high temperature[J]. Heat Treatment of Metals, 2022, 47(2): 74-77. [13]Huang E W, Chou H S, Tu K N, et al. Element effects on high-entropy alloy vacancy and heterogeneous lattice distortion subjected to quasi-equilibrium heating[J]. Scientific Reports, 2019, 9: 14788. [14]Ji F F, Wang Z, Wu L J. High temperature oxidation and hot corrosion behaviors of Fe65.7Ni11.7Ti1Mo6.6Co15 high entropy alloy[J]. Materials Today Communications, 2022, 32: 104063. [15]Chen L, Zheng Z, Zhen T, et al. High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 764: 845-852. [16]费孝顺, 赵玉涛, 梁向锋, 等. 一种新型高温合金在900和1100 ℃下200 h的氧化行为[J]. 材料科学与工艺, 2018, 26(5): 59-65. Fei Xiaoshun, Zhao Yutao, Liang Xiangfeng, et al. Study on oxidation behavior of a new single-crystal superalloy at 900 and 1100 ℃ for 200 h[J]. Materials Science and Technology, 2018, 26(5): 59-65 [17]Adomako N K, Kim J H, Hyun Y T. High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133: 13-16. [18]周 旬, 艾矫健, 王晓东, 等. 铁氧化层中离子扩散抑制问题研究[J]. 轧钢, 2017, 34(5): 12-15, 22. Zhou Xun, Ai Jiaojian, Wang Xiaodong, et al. Study on the diffusion control of ion in oxide scale[J]. Steel Rolling, 2017, 34(5): 12-15, 22. [19]龚志翔, 高振波, 吴家明, 等. 加热过程中H2O(g)含量对55SiCr弹簧钢表面氧化层及脱碳行为的影响[J]. 理化检验-物理分册, 2021, 57(10): 12-17. Gong Zhixiang, Gao Zhenbo, Wu Jiaming, et al. Effect of H2O(g) content on surface oxide layer and decarburization behavior of 55SiCr spring steel during heating[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2021, 57(10): 12-17. |