[1]邢 梅, 林方敏, 唐立志, 等. Al元素对Fe-Mn-Al-C系低密度钢的影响特性综述[J]. 中国冶金, 2022, 32(2): 15-26. Xing Mei, Lin Fangmin, Tang Lizhi, et al. Effect of Al on properties of Fe-Mn-Al-C low density steel[J]. China Metallurgy, 2022, 32(2): 15-26. [2]高志喆, 程福超, 冯一帆, 等. 时效时间对低密度超高锰铸钢组织性能的影响[J]. 金属热处理, 2021, 46(8): 115-120. Gao Zhizhe, Cheng Fuchao, Feng Yifan, et al. Effect of aging time on microstructure and properties of a low density ultra-high manganese cast steel[J]. Heat Treatment of Metals, 2021, 46(8): 115-120. [3]付锡彬, 孟少博, 刘文胜, 等. 固溶处理对Fe-30Mn-10Al-1C低密度钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(7): 114-119. Fu Xibin, Meng Shaobo, Liu Wensheng, et al. Effect of solution treatment on microstructure and mechanical properties of Fe-30Mn-10Al-1C low density steel[J]. Heat Treatment of Metals, 2022, 47(7): 114-119. [4]Xu X, Li J, Li W, et al. Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum[J]. Materials and Design, 2019, 180: 107924. [5]王凤权, 孙 挺, 王毛球, 等. 不同镍含量奥氏体基低密度热轧钢的组织与力学性能[J]. 金属热处理, 2021, 46(12): 31-39. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Microstructure and mechanical properties of low density austenitic matrix hot rolling steel with different Ni contents[J]. Heat Treatment of Metals, 2021, 46(12): 31-39. [6]王英虎. 基于FactSage的Fe-15Mn-8Al-0.25C低密度钢的组织及力学性能[J]. 金属热处理, 2022, 47(7): 203-210. Wang Yinghu. Microstructure and mechanical properties of Fe-15Mn-8Al-0.25C low density steel based on FactSage[J]. Heat Treatment of Metals, 2022, 47(7): 203-210. [7]Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel[J]. Acta Materialia, 2016, 109: 213-222. [8]Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Materialia, 2017, 135: 215-225. [9]Pan H, Li X, Zhang H, et al. Achieving ultra-high elongation of 1401% in a warm-rolled medium Mn lightweight steel with dual-phase lamellar structure[J]. Materials Science and Engineering A, 2023, 862: 144493. [10]Xu X Y, Li J Z, Li J W, et al. Effect of cooling rate on microstructure and mechanical properties of a microlaminated low-density steel[J]. Journal of Materials Engineering and Performance, 2023, 33(1): 451-462. [11]Xu X Y, Li J Z, Zhang W, et al. Structure-property relationship in a micro-laminated low-density steel for offshore structure[J]. Steel Research International, 2019, 90(5): 1800515. [12]Xu X Y, Liu D, Shang X L, et al. Strain-associated alpha-ferrite phase transformation in a micro-laminated low-density steel[J]. Steel Research International, 2022, 93(7): 2100733. [13]刘 敏, 王 纯, 程知松, 等. 热轧工艺对390 MPa级高铁转向架用钢组织性能影响[J]. 中国冶金, 2019, 29(11): 49-54, 66. Liu Min, Wang Chun, Cheng Zhisong, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54, 66. [14]王进建, 陈润农, 胡惠超, 等. 铝对4Cr1.5Ni耐候钢组织和耐候性的影响[J]. 钢铁, 2023, 58(2): 126-136. Wang Jinjian, Chen Runnong, Hu Huichao, et al. Effect of Al on microstructure and weathering resistance of 4Cr1.5Ni weathering steel[J]. Iron and Steel, 2023, 58(2): 126-136. [15]宋丽英, 王明明, 邢俊芳, 等. 钛微合金化700 MPa级高强耐候钢组织和性能研究[J]. 钢铁研究学报, 2022, 34(12): 1447-1456. Song Liying, Wang Mingming, Xing Junfang, et al. Study on microstructures and properties of 700 MPa Ti-microalloyed high strength weathering steels[J]. Journal of Iron and Steel Research, 2022, 34(12): 1447-1456. [16]孙丹丹, 万卫浩, 韩 冰, 等. SMA490BW耐候钢中析出相和夹杂物的定量统计分析[J]. 冶金分析, 2020, 40(8): 1-7. Sun Dandan, Wan Weihao, Han Bing, et al. Quantitative and statistical analysis of precipitation phases and inclusions in SMA490BW weathering resistant steel[J]. Metallurgical Analysis, 2020, 40(8): 1-7. [17]An L, Sun Y T, Lu S P, et al. Enhanced fatigue property of welded S355J2W steel by forming a gradient nanostructured surface layer[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. [18]Wu X Y, Qi W C, Liu Y J, et al. Effect of different methods on properties of SMA490BW steel welded joints[J]. Advanced Materials Research, 2015, 1095: 902-905. [19]赵 康, 吴志方, 孙 挺, 等. Cr元素对高Al系Fe-Mn-Al-C低密度钢的影响综述[J]. 金属热处理, 2023, 48(10): 239-246. Zhao Kang, Wu Zhifang, Sun Ting, et al. A review of effect of Cr element on high Al Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2023, 48(10): 239-246. [20]阳 锋, 罗海文, 董 瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867. Yang Feng, Luo Haiwen, Dong Han. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling[J]. Acta Metallurgica Sinica, 2018, 54(6): 859-867. [21]Han C S, Gao H, Huang Y, et al. Mechanism-based strain gradient crystal plasticity-I. Theory[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1188-1203. [22]Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues[J]. Scripta Materialia, 2003, 48(2): 119-125. [23]张福成, 康 杰. 钢中界面科学研究进展(I)[J]. 钢铁, 2022, 57(8): 11-29. Zhang Fucheng, Kang Jie. Progress in scientific research of interfaces in steel (I)[J]. Iron and Steel, 2022, 57(8): 11-29. [24]周红伟, 高建兵, 沈加明, 等. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023. Zhou Hongwei, Gao Jianbing, Shen Jiaming, et al. Twin boundary evolution under low-cycle fatigue of C-HRA-5 austenitic heat-resistant steel at high temperature[J]. Acta Metallurgica Sinica, 2022, 58(8): 1013-1023. [25]侯双平, 刘 静, 黄 峰, 等. 铁素体晶界结构对管线钢HIC敏感性的影响[J]. 钢铁研究学报, 2020, 32(12): 1102-1113. Hou Shuangping, Liu Jing, Huang Feng, et al. Effect of grain boundary structure of ferrite on HIC susceptibility of pipeline steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1102-1113. [26]李秀程, 孙明煜, 赵靖霄, 等. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660. Li Xiucheng, Sun Mingyu, Zhao Jingxiao, et al. Quantitative crystallographic characterization of boundaries in ferrite-bainite/martensite dual-phase steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 653-660. [27]王国珍, 王玉良, 轩福贞, 等. 加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响[J]. 金属学报, 2009, 45(7): 866-872. Wang Guozhen, Wang Yuliang, Xuan Fuzhen, et al. Effects of loading rate, notch geometry and loading mode on the cleavage fracture behavior of 16MnR steel[J]. Acta Metallurgica Sinica, 2009, 45(7): 866-872. [28]Sun B, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite[J]. Acta Materialia, 2019, 164: 683-696. |