[1]陈思联, 惠卫军, 王连海, 等. 节能低成本高品质非调质钢的研发[J]. 钢铁, 2014, 49(6): 1-7. Chen Silian, Hui Weijun, Wang Lianhai, et al. Research and development of energy-saving high performance microalloyed forging steels[J]. Iron and Steel, 2014, 49(6): 1-7. [2]陈蕴博, 马鸣图, 王国栋. 汽车用非调质钢的研究进展[J]. 中国工程科学, 2014, 16(2): 4-17. Chen Yunbo, Ma Mingtu, Wang Guodong, et al. Resent progress of non-quenched and tempered steel for automotive sheet[J]. Strategic Study of CAE, 2014, 16(2): 4-17. [3]周 蕾, 魏刚武, 高延详, 等. 30MnVS非调质钢的开发[J]. 钢铁, 2017, 52(3): 76-81. Zhou Lei, Wei Gangwu, Gao Yanxiang, et al. Development of 30MnVS non-quenched and tempered steel[J]. Iron and Steel, 2017, 52(3): 76-81. [4]Buchmayr B. Critical assessment 22: Bainitic forging steels[J]. Materials Science and Technology, 2016, 32(6): 517-522. [5]Sourmail T, Smanio V. Optimisation of the mechanical properties of air cooled bainitic steel components through tailoring of the transformation kinetics[J]. Materials Science and Engineering A, 2013, 582: 257-261. [6]Citti P, Giorgetti A, Millefanti U. Mechanical characterization of a new low carbon bainitic steel for high performance crankshaft[J]. Procedia Structural Integrity, 2018, 12: 438-447. [7]Elek L, Wagener R, Kaufmann H, et al. New bainitic steel for cyclic loaded safety parts with improved cyclic material behaviour[J]. Procedia Engineer, 2015, 101: 151-158. [8]张继魁, 董 伦, 辛 莹, 等. 低碳Mn-B贝氏体钢在汽车前轴上的应用试验[J]. 机械工程材料, 2003, 27(7): 42-44. Zhang Jikui, Dong Lun, Xin Ying, et al. Application of low carbon Mn-B bainitic steel to automobile front axle[J]. Materials for Mechanical Engineering, 2003, 27(7): 42-44. [9]冯佳奇, 王敢利, 邹敏华, 等. 重型汽车前轴用非调质钢的研究[J]. 汽车工艺与材料, 2014(4): 1-7. [10]安治国, 黄艳新, 侯环宇, 等. 汽车前轴用贝氏体型非调质钢连续冷却转变[J]. 钢铁, 2016, 51(12): 70-73. An Zhiguo, Huang Yanxin, Hou Huanyu, et al. Continuous cooling transformation of bainite non-quenched and tempered steel for automobile front axle[J]. Iron and Steel, 2016, 51(12): 70-73. [11]王占花, 惠卫军, 谢志奇, 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1141-1151. Wang Zhanhua, Hui Weijun, Xie Zhiqi, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel[J]. Acta Metallurgica Sinica, 2020, 56(11): 1141-1151. [12]Hui W J, Wang Z H, Xu Z B, et al. Hydrogen embrittlement of a microalloyed bainitic forging steel[J]. Journal of Iron and Steel Research International, 2019, 26: 1011-1021. [13]Hui W J, Xu Z B, Zhang Y J, et al. Hydrogen embrittlement behavior of high strength rail steels: A comparison between pearlitic and bainitic microstructure[J]. Materials Science and Engineering A, 2017, 704: 199-206. [14]Zhang Y J, Xu Z B, Zhao X L, et al. Hydrogen embrittlement behavior of high strength bainitic rail steel: Effect of tempering treatment[J]. Engineering Failure Analysis, 2018, 93: 100-110. [15]Takai K, Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels[J]. ISIJ International, 2003, 43(4): 520-526. [16]Lovicu G, Bottazzi M, D'aiuto F, et al. Hydrogen embrittlement of automotive advanced high-strength steels[J]. Metallurgical and Materials Transaction A, 2012, 43: 4075-4087. [17]Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility on quenching and partioning treated steels[J]. Materials Science and Engineering A, 2016, 658: 400-408. [18]Shi X B, Yan W, Wang W, et al. HIC and SCC behavior of high-strength pipeline steels[J]. Acta Metallurgica Sinica, 2015, 28: 799-808. [19]Shim D H, Lee T, Lee J, et al. Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite[J]. Materials Science and Engineering A, 2017, 700: 473-480. [20]Luo Y, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel[J]. Materials Science and Engineering A, 2010, 527: 3433-3437. [21]Lan H F, Du L X, Misra R D K. Effect of microstructural constituent on strength-toughness combination in a low carbon bainitic steel[J]. Materials Science and Engineering A, 2014, 611: 194-200. [22]Ryu J Y, Chun Y S, Lee C S, et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J]. Acta Materialia, 2012, 60: 4085-4092. [23]王 贞, 刘 静, 黄 峰, 等. 回火温度对DP600钢氢扩散及氢脆敏感性的影响[J]. 金属热处理, 2021, 46(2): 87-94. Wang Zhen, Liu Jing, Huang Feng, et al. Effect of tempering temperature on hydrogen diffusion and hydrogen embrittlement susceptibility of DP600 steel[J]. Heat Treatment of Metals, 2021, 46(2): 87-94. [24]Zafra A, Peral L B, Belzunce J, et al. Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures[J]. International Journal of Hydrogen Energy, 2018, 43: 9068-9082. [25]Lee J, Lee T, Kwon Y J, et al. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel[J]. Metals and Materials International, 2016, 22(3): 364-372. |