[1]刘文仲. 中国钢铁工业智能制造现状及思考[J]. 中国冶金, 2020, 30(6): 1-7. Liu Wenzhong. Current situation and thinking of intelligent manufacturing in China's iron and steel industry[J]. China Metallurgy, 2020, 30(6): 1-7. [2]Zhang Lixin, Xu Zhengguang, Wei Shuailing, et al. Grain size automatic determination for 7050Al alloy based on a fuzzy logic method[J]. Rare Metal Materials and Engineering, 2016, 45(3): 548-554. [3]刁福林, 陈 昊, 李延丰, 等. 高温合金的晶界提取及特征定量表征方法[J]. 失效分析与预防, 2019, 14(1): 25-32. Diao Fulin, Chen Hao, Li Yanfeng, et al. Study on grain boundary extraction of alloy materials and its quantitative evaluation method[J]. Failure Analysis and Prevention, 2019, 14(1): 25-32. [4]朱建栋. 钢材金相图像晶界提取算法研究及智能评级软件设计[D]. 镇江: 江苏大学, 2018. Zhu Jiandong. Research on the algorithm used for grain boundary extraction from metallographic images and design of intelligent rating software[D]. Zhenjiang: Jiangsu University, 2018. [5]许帧英, 张 琦, 朱建栋. 基于纹理特征的集成学习金相自动评级方法[J]. 信息技术, 2018(9): 71-74, 78. Xu Zhenying, Zhang Qi, Zhu Jiandong. Metallographic automatic rating method based on ensemble learning with texture features[J]. Information Technology, 2018(9): 71-74, 78. [6]孟祥亮. 图像识别技术在S355J2W钢板带状组织评定中的应用[J]. 理化检验(物理分册), 2019, 55(9): 598-601, 606. Meng Xiangliang. Application of image recognition technology in evaluation of banded structure of S4355J2W steel plate[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2019, 55(9): 598-601, 606. [7]韩越祥, 卢振发. 基于图像处理20钢的晶界提取算法[J]. 实验室研究与探索, 2021, 40(8): 32-36. Han Yuexiang, Lu Zhenfa. Research on the algorithm of grain boundary extraction of 20 steel based on image processing[J]. Research and Exploration in Laboratory, 2021, 40(8): 32-36. [8]张佳宁. 基于深度学习的金相晶粒度自动评级系统[D]. 北京: 冶金自动化研究设计院, 2021. Zhang Jianing. Automatic grain size rating of metallographic based on deep learning[D]. Beijing: Automation Research and Design Institute of Metallurgical Industry, 2021. [9]张利欣, 孙 涵, 尧昊天, 等. 基于自适应标记的金相组织智能检测方法[J]. 实验室研究与探索, 2022, 41(8): 1-4, 101. Zhang Lixin, Sun Han, Yao Haotian, et al. Research on metallographic structure detection method based on adaptive marked[J]. Research and Exploration in Laboratory, 2022, 41(8): 1-4, 101. [10]刘 玠. 人工智能推动冶金工业变革[J]. 钢铁, 2020, 55(6): 1-7. Liu Jie. Artificial intelligence drives changes in metallurgical industry[J]. Iron and Steel, 2020, 55(6): 1-7. [11]立济伟. 基于深度学习的锂电池极片缺陷检测与分类系统[D]. 上海: 上海电机学院, 2022. Li Jiwei. Lithium battery pole piece defect detection and classification system based on deep learning[D]. Shanghai: Shanghai Dianji University, 2022. [12]黄晓鸣, 何富运, 唐晓虎, 等. U-Net及其变体在医学图像分割中的应用研究综述[J]. 中国生物医学工程学报, 2022, 41(5): 567-576. Huang Xiaoming, He Fuyun, Tang Xiaohu, et al. Review on applications of U-Net and its variants in medical image segmentation[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 567-576. [13]徐思则, 刘 威. 基于UNet网络的乳腺癌肿瘤细胞图像分割[J]. 电子设计工程, 2022, 30(12): 63-66, 73. Xu Size, Liu Wei. UNet-based image segmentation of breast cancer tumor cells[J]. Electronic Design Engineering, 2022, 30(12): 63-66, 73. [14]周思雨, 储岳中, 张学锋. 基于改进UNet网络的烧结矿气孔分割[J]. 计算机系统应用, 2022, 31(7): 278-284. Zhou Siyu, Chu Yuezhong, Zhang Xuefeng. Segmentation of sinter pores based on improved UNet network[J]. Computer Systems and Applications, 2022, 31(7): 278-284. [15]李 原, 李燕君, 刘进超, 等. 基于改进Res-UNet网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513-1520. Li Yuan, Li Yanjun, Liu Jinchao, et al. Research on segmentation of steel surface defect images based on improved Res-UNet network[J]. Journal of Electronics and Information Technology, 2022, 44(5): 1513-1520. [16]宋翰凌, 孟晓亮, 罗 森, 等. 基于深度学习的连铸坯低倍质量评级[J]. 冶金自动化, 2023, 47(2): 73-81. Song Hanlin, Meng Xiaoliang, Luo Sen, et al. Evaluation on macro quality of strand based on deep learning method[J]. Metallurgical Industry Automation, 2023, 47(2): 73-81. [17]许 涛, 麻爱松, 吕 欢, 等. 基于改进UNet模型的原棉杂质图像分割方法[J]. 西安工程大学学报, 2023, 37(1): 77-83. Xu Tao, Ma Aisong, Lü Huan, et al. A raw cotton impurity image segmentation method based on improved UNet model[J]. Journal of Xi'an Polytechnic University, 2023, 37(1): 77-83. [18]郭金涛, 王 龙, 余建波, 等. 基于深度学习的宽厚板热轧轧制力预测[J]. 锻压技术, 2022, 47(7): 167-174. Guo Jintao, Wang Long, Yu Jianbo, et al. Prediction on rolling force in hot rolling of wide and thick plate based on deep learning[J]. Forging and Stamping Technology, 2022, 47(7): 167-174. [19]程金浪. 快速并行细化算法检测地震反射同相轴[J]. 内蒙古煤炭经济, 2019(5): 156-157, 145. Cheng Jinlang. Research on fast parallel thinning algorithm for detecting seismic reflection coaxial[J]. Inner Mongolia Coal Economy, 2019(5): 156-157, 145. [20]张梦原, 陈俊智. 基于数字图像处理的岩体结构面迹线检测[J]. 化工矿物与加工, 2023, 52(1): 29-33. Zhang Mengyuan, Chen Junzhi. Rock mass discontinuity trace detection based on digital image processing[J]. Industrial Minerals and Processing, 2023, 52(1): 29-33. [21]GB/T 6394—2017, 金属平均晶粒度测定方法[S]. |