[1]Zhang D, Wang L, Zhang H, et al. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization[J]. Acta Materialia, 2020, 189: 93-104. [2]Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436. [3]Nguyen H D, Pramanik A, Basak A K, et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties[J]. Journal of Materials Research and Technology, 2022, 18: 4641-4661. [4]Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy[J]. Acta Materialia, 2019, 169: 45-59. [5]Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness[J]. Acta Materialia, 2019, 162: 239-254. [6]Yu H, Li F, Wang Z, et al. Fatigue performances of selective laser melted Ti-6Al-4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments[J]. International Journal of Fatigue, 2019, 120: 175-183. [7]纪小虎, 李 萍, 时迎宾, 等. TA15钛合金等温多向锻造晶粒细化机理与力学性能[J]. 中国有色金属学报, 2019, 29(11): 2515-2523. Ji Xiaohu, Li Ping, Shi Yingbin, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11): 2515-2523. [8]Wu H, Sun Z, Cao J, et al. Formation and evolution of tri-modal microstructure during dual heat treatment for TA15 Ti-alloy[J]. Journal of Alloys and Compounds, 2019, 786: 894-905. [9]Sun Q J, Xie X. Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing[J]. Materials Science and Engineering A, 2018, 724: 493-501. [10]Wu X, Cai C, Yang L, et al. Enhanced mechanical properties of Ti-6Al-2Zr-1Mo-1V with ultrafine crystallites and nano-scale twins fabricated by selective laser melting[J]. Materials Science and Engineering A, 2018, 738: 10-14. [11]Cao S, Chu R, Zhou X, et al. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 744: 357-363. [12]张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005. [13]Huang S, Sun B, Guo S. Microstructure and property evaluation of TA15 titanium alloy fabricated by selective laser melting after heat treatment[J]. Optics and Laser Technology, 2021, 144: 107442. [14]Wang Q, Wang M, Guo S, et al. In situ tensile test of selective laser melted Ti-6.5Al-2Zr-1Mo-1V alloy at different stages of martensite decomposition[J]. Journal of Materials Science, 2022, 58(4): 1798-1812. [15]Cai C, Wu X, Liu W, et al. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance[J]. Journal of Materials Science and Technology, 2020, 57: 51-64. [16]Wei K, Wang Z, Zeng X. Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5Sn α titanium alloy[J]. Materials Science and Engineering A, 2018, 709: 301-311. [17]黄伯云, 李成功, 石力开, 等. 中国材料工程大典 第4卷 有色金属材料工程(上)[M]. 北京: 化学工业出版社, 2006. [18]Chlebus E, Kuz'nicka B, Kurzynowski T, et al. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62(5): 488-495. [19]Sallica-Leva E, Caram R, Jardini A L, et al. Ductility improvement due to martensite alpha' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 149-158. [20]Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672: 643-652. [21]Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312. [22]莱茵斯C, 皮特尔斯 M. 钛与钛合金[M]. 陈振华,等译. 北京: 化学工业出版社, 2005. [23]Jiang J, Ren Z, Ma Z, et al. Mechanical properties and microstructural evolution of TA15 Ti alloy processed by selective laser melting before and after annealing[J]. Materials Science and Engineering A, 2020, 772: 138742. [24]Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys[J]. Materials Science and Engineering A, 2000, 283(1): 17-24. [25]Zhang X Y, Fang G, Leeflang S, et al. Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2018, 735: 1562-1575. [26]Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185. [27]Liang Z, Sun Z, Zhang W, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy[J]. Journal of Alloys and Compounds, 2019, 782: 1041-1048. |