[1]Alshmri F. Lightweight material: Aluminium high silicon alloys in the automotive industry[J]. Advanced Materials Research, 2013, 2586(774/775/776): 1271-1276. [2]潘占福, 李 悦, 付 林, 等. 轻量化技术在汽车上的应用[J]. 汽车工艺与材料, 2021(5): 1-8. Pan Zhanfu, Li Yue, Fu Lin, et al. Application of lightweight technologies on automobiles[J]. Automobile Technology and Material, 2021(5): 1-8. [3]周友明, 程一明, 李 骏, 等. 基于铝合金材料应用的重卡车架设计及轻量化[J]. 机械工程师, 2021(5): 91-93, 96. Zhou Youming, Cheng Yiming, Li Jun, et al. Design and lightweight of heavy truck frame based on aluminum alloy material application[J]. Mechanical Engineer, 2021(5): 91-93, 96. [4]Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7××× series aluminum alloys: A physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. [5]Zhang C, Wan Y J, Zou W J, et al. Composition optimization for Al-Zn-Mg-Cu alloys based on thermodynamics and first-principles calculations[J]. Computational and Theoretical Chemistry, 2021, 1201(1): 113293. [6]Mukhopadhyay A K. Microstructure and properties of high strength aluminium alloys for structural applications[J]. Transactions of the Indian Institute of Metals, 2009, 62(2): 113-122. [7]Jata K V. Lightweight Alloys for Aerospace Applications[M]. Manhattan: Wiley, 2002. [8]Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34. [9]王 雷, 李家衡, 张英波, 等. 400 km/h 高速列车蓄电池箱体结构有限元仿真[J]. 电焊机, 2018, 48(10): 89-93. Wang Lei, Li Jiaheng, Zhang Yingbo, et al. Finite element simulation on battery box of 400 km high-speed train[J]. Electric Welding Machine, 2018, 48(10): 89-93. [10]Zhu A W, Gable B M, Shiflet G J, et al. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys: A computational analysis[J]. Acta Materialia, 2004, 52: 3671-3679. [11]Zheng Q J, Zhang L L, Jiang H X, et al. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. Journal of Materials Science and Technology, 2020, 47: 142-151. [12]Holl H A. Investigations into the possibility of reducing quench sensitivity in high strength Al-Zn-MgCu alloys[J]. The Japan Institute of Metals, 1969, 97: 200-205. [13]Conserva M, Russo E, Caloni O. Comparison of the influence of chromium and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys[J]. Metallurgical Transactions, 1971, 2(4): 1227-1232. [14]Waterloo G, Hansen V, Gjønnes J, et al. Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu, Zr) alloys[J]. Materials Science and Engineering A, 2001, 303: 226-233. [15]Dong J, Cui J Z, Yu F X. A new way to cast high-alloyed Al-Zn-Mg-Cu-Zr for super-high strength and toughness[J]. Journal of Materials Processing Technology, 2006, 171(3): 399-404. [16]Kumar A, Mukhopadhyay A K, Prasad K S. Superplastic behaviour of Al-Zn-Mg-Cu-Zr alloy AA7010 containing Sc[J]. Materials Science and Engineering A, 2010, 527(3): 854-857. [17]Senkov O N, Bhat R B, Senkova S V, et al. Microstructure and properties of cast ingots of Al-ZnMg-Cu alloys modified with Sc and Zr[J]. Metallurgical and Materials Transactions A, 2005, 36(8): 2115-2126. [18]Rometsch P A, Zhang Y, Knight S. Heat treatment of 7××× series aluminium alloys-some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2003-2017. [19]杨光昱, 孟宏帅, 刘少军, 等. Al-6.3Zn-2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能[J]. 金属学报, 2012, 48(2): 211-219. Yang Guangyu, Meng Hongshuai, Liu Shaojun, et al. Microstructures and room temperature mechanical properties of Al-6.3Zn-2.8Mg-1.8Cu casting aluminum alloy[J]. Acta Metallurgica Sinica, 2012, 48(2): 211-219. [20]樊喜刚. Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [21]刘吉梓. Al-Zn-Mg-(Cu)合金时效中纳米析出相结构及演变规律研究[D]. 长沙: 湖南大学, 2014. [22]Wang X D, Pan Q L, Wang W Y, et al. Effects of pre-strain and aging treatments on the mechanical property and corrosion resistance of the spray formed ultra-high strength Al-Zn-Mg-Cu alloy[J]. Materials Characterization, 2022, 194(3): 261-276. [23]赵 宁. 挤压铸造Al-Zn-Mg-Cu-Zr-Sc合金的高温变形机制研究[D]. 鞍山: 辽宁科技大学, 2021. [24]徐雪芳, 王春华. 时效工艺对Al-Zn-Mg-Cu铝合金组织与性能的影响[J]. 金属热处理, 2020, 45(4): 152-155. Xu Xuefang, Wang Chunhua. Influence of aging processes on microstructure and properties of Al-Zn-Mg-Cu aluminium alloy[J]. Heat Treatment of Metals, 2020, 45(4): 152-155. [25]林亮华, 刘志义, 韩向楠, 等. 过时效态Al-Zn-Mg-Cu合金断裂韧性与显微组织分析[J]. 中南大学学报(自然科学版), 2020, 51(2): 301-308. Lin Lianghua, Liu Zhiyi, Han Xiangnan, et al. Analysis of fracture toughness and microstructure of Al-Zn-Mg-Cu alloy in overaged condition[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 301-308. [26]薛克敏, 李云辉, 许 兵, 等. 时效制度对新型Al-Zn-Mg-Cu合金组织与性能的影响[J]. 金属热处理, 2021, 46(3): 1-7. Xue Kemin, Li Yunhui, Xu Bing, et al. Effect of aging on microstructure and properties of new Al-Zn-Mg-Cu alloy[J]. Heat Treatment of Metals, 2021, 46(3): 1-7. [27]Adler P N, Delasi R. Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys[J]. Metallurgical Transactions A, 1977, 8(7): 1185-1190. [28]Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminum[J]. Acta Mater, 2003, 51(3): 713-729. [29]Liu S D, Li C B, Deng Y L, et al. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy[J]. Materials Chemistry and Physics, 2015, 167: 320-329. |