[1]冯路路, 吴开明, 余宏伟, 等. 高强韧水电站用钢的生产现状及发展趋势[J]. 钢铁研究学报, 2020, 32(3): 175-185. Feng Lulu, Wu Kaiming, Yu Hongwei, et al. Production status and developing tendency of high strength and toughness steel for hydropower station[J]. Journal of Iron and Steel Research, 2020, 32(3): 175-185. [2]陈建礼, 楚宝帅, 张晓琨. 4Cr5Mo2V扁钢中AS14类退火组织成因分析[J]. 金属热处理, 2023, 48(5): 66-69. Chen Jianli, Chu Baoshuai, Zhang Xiaokun. Cause analysis of AS14 annealed microstructure in 4Cr5Mo2V flat steel[J]. Heat Treatment of Metals, 2023, 48(5): 66-69. [3]王 岐, 邢相栋, 王荪璇, 等. 冷却速率对Zr-3.1Nb合金显微组织[J]. 材料工程, 2023, 51(5): 112-119. Wang Qi, Xing Xiangdong, Wang Sunxuan, et al. Effect of cooling rate on microstructure and tensile properties of Zr-3.1Nb alloy[J]. Journal of Materials Engineering, 2023, 51(5): 112-119. [4]闫洪涛, 王永金, 齐海龙, 等. 淬火温度对空冷贝氏体-马氏体复相耐磨钢组织性能的影响[J]. 金属热处理, 2023, 48(3): 129-134. Yan Hongtao, Wang Yongjin, Qi Hailong, et al. Effect of quenching temperature on microstructure and properties of air-cooled bainite-martensite multiphase wear-resistant steel[J]. Heat Treatment of Metals, 2023, 48(3): 129-134. [5]Kim M Y, Chu D J, Lee Y S, et al. Mechanical property change and precipitate evolution during long-term aging of 1.25Cr-0.5Mo steel[J]. Materials Science and Engineering A, 2020, 789: 139663. [6]魏 浩, 陈振业, 赵燕青, 等. Q420qENH 耐候桥梁钢的动态CCT曲线研究[J]. 热加工工艺, 2021, 50(16): 46-49. Wei Hao, Chen Zhenye, Zhao Yanqing, et al. Study on dynamic CCT curve of Q420qENH weathering bridge steel[J]. Hot Working Technology, 2021, 50(16): 46-49. [7]Guo Xinpeng, Li Huijun, Xue Peng, et al. Microstructure and mechanical properties of 600 MPa grade ultra-high strength aluminum alloy fabricated by wire-arc additive manufacturing[J]. Journal of Materials Science and Technology, 2023, 149: 55-56. [8]陈星宇, 冯路路, 宋增强, 等. 临界淬火对超厚水电钢冲击韧性的影响[J]. 材料与冶金学报, 2021, 20(3): 211-216. Chen Xingyu, Feng Lulu, Song Zengqiang, et al. Effect of critical quenching on impact toughness of ultra-thick hydropower steel[J]. Journal of Materials and Metallurgy, 2021, 20(3): 211-216. [9]吴忠潮, 周拥军, 段宝玉, 等. 20SiMn2CrNi钢Ms点下的等温转变组织及其强韧性[J]. 金属热处理, 2023, 48(7): 15-21. Wu Zhongchao, Zhou Yongjun, Duan Baoyu, et al. Isothermal microstructure and strength and toughness of 20SiMn2CrNi steel below Ms[J]. Heat Treatment of Metals, 2023, 48(7): 15-21. [10]刘 悦, 吴红艳, 杜林秀. 铁路车辆用V-N-Cr微合金化Q690高强耐候钢组织性能和腐蚀行为[J]. 材料工程, 2021, 49(4): 111-119. Liu Yue, Wu Hongyan, Du Linxiu. Microstructures and corrosion behavior of V-N-Cr microalloyed Q690 high strength weathering steel for railway vehicles[J]. Journal of Materials Engineering, 2021, 49(4): 111-119. [11]Shi Q, Ma L, Wang Q, et al. Seismic performance of square concrete columns reinforced with grade 600 MPa longitudinal and transverse reinforcement steel under high axial load[J]. Structures, 2021, 32: 1955-1970. [12]夏政海, 曹志强, 罗 登, 等. 超低碳高强度Q550D贝氏体钢的研制[J]. 钢铁研究学报, 2010, 22(6): 40-44. Xia Zhenghai, Cao Zhiqiang, Luo Deng, et al. Development of an ultra low carbon bainitic steel Q550D[J]. Journal of Iron and Steel Research, 2010, 22(6): 40-44. [13]章 威, 董洪波, 杨 新. Q550D超低碳贝氏体钢动态再结晶行为[J]. 材料热处理学报, 2012, 33(12): 158-162. Zhang Wei, Dong Hongbo, Yang Xin. Dynamic recrystallization behavior of Q550D ultra-low carbon bainitic steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(12): 158-162. [14]Li Changsheng, Chen Jie, Tu Xingyang, et al. Effect of finish rolling temperature on microstructures and mechanical properties of 1000 MPa grade tempered steel plate for hydropower station[J]. Journal of Manufacturing Processes, 2021, 67: 1-11. [15]Lou H H, Dong H X, Dong Z B, et al. Study on the tensile and impact properties of 600 MPa HSLA steel at different temperature[J]. Advanced Materials Research, 2012, 602-604: 426-429. [16]Seo H N, Lee S I, Huang B. Microstructure, hardness and tensile properties of 600 MPa-grade high-strength and seismic resistant reinforcing steels[J]. Korean Journal of Materials Research, 2017, 27(9): 477-483. [17]Chen L, Nie P, Qu Z, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800 MPa grade high-strength low-alloy steel[J]. Journal of Manufacturing Processes, 2020, 50: 132-141. [18]邹 扬, 张苏渊, 张学峰, 等. Nb含量和变形量对水电站用800 MPa高强钢淬火再加热奥氏体晶粒尺寸及其分布的影响[J]. 金属热处理, 2023, 48(4): 1-9. Zou Yang, Zhang Suyuan, Zhang Xuefeng, et al. Effects of Nb content and deformation on reheated austenite grain size and distribution of 800 MPa high strength steel for hydropower station before quenching[J]. Heat Treatment of Metals, 2023, 48(4): 1-9. [19]马玉喜, 段小林, 刘 静, 等. 800 MPa级含Ti高强钢铸坯断裂的原因[J]. 钢铁研究学报, 2016, 28(2): 51-56. Ma Yuxi, Duan Xiaolin, Liu Jing, et al. Cause of cracking of 800 MPa grade Ti-added high strength steel cast slab[J]. Journal of Iron and Steel Research, 2016, 28(2): 51-56. [20]Sun Q, Di H S, Li J C, et al. A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding[J]. Materials Science and Engineering A, 2016, 669: 150-158. [21]石俊亮, 郑为为, 梁兴国. 回火温度对铁素体/粒状贝氏体钢显微组织及力学性能的影响[J]. 材料热处理学报, 2019, 40(9): 107-113. Shi Junliang, Zheng Weiwei, Liang Xingguo. Effects of tempering on microstructure and mechanical properties of fine grain ferrite/granular bainite dual phase steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 107-113. [22]周松波, 胡 锋, 王 坤, 等. 中碳贝氏体钢拉伸变形中裂纹形成及扩展机制分析[J]. 钢铁研究学报, 2022, 34(3): 248-256. Zhou Songbo, Hu Feng, Wang Kun, et al. Analysis of crack formation and extension mechanism in tensile deformation of medium carbon bainitic steel[J]. Journal of Iron and Steel Research, 2022, 34(3): 248-256. |